Do you want to publish a course? Click here

How Deterministic are Good-For-Games Automata?

109   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In GFG automata, it is possible to resolve nondeterminism in a way that only depends on the past and still accepts all the words in the language. The motivation for GFG automata comes from their adequacy for games and synthesis, wherein general nondeterminism is inappropriate. We continue the ongoing effort of studying the power of nondeterminism in GFG automata. Initial indications have hinted that every GFG automaton embodies a deterministic one. Today we know that this is not the case, and in fact GFG automata may be exponentially more succinct than deterministic ones. We focus on the typeness question, namely the question of whether a GFG automaton with a certain acceptance condition has an equivalent GFG automaton with a weaker acceptance condition on the same structure. Beyond the theoretical interest in studying typeness, its existence implies efficient translations among different acceptance conditions. This practical issue is of special interest in the context of games, where the Buchi and co-Buchi conditions admit memoryless strategies for both players. Typeness is known to hold for deterministic automata and not to hold for general nondeterministic automata. We show that GFG automata enjoy the benefits of typeness, similarly to the case of deterministic automata. In particular, when Rabin or Streett GFG automata have equivalent Buchi or co-Buchi GFG automata, respectively, then such equivalent automata can be defined on a substructure of the original automata. Using our typeness results, we further study the place of GFG automata in between deterministic and nondeterministic ones. Specifically, considering automata complementation, we show that GFG automata lean toward nondeterministic ones, admitting an exponential state blow-up in the complementation of a Streett automaton into a Rabin automaton, as opposed to the constant blow-up in the deterministic case.



rate research

Read More

109 - Sven Schewe 2020
This paper discusses the hardness of finding minimal good-for-games (GFG) Buchi, Co-Buchi, and parity automata with state based acceptance. The problem appears to sit between finding small deterministic and finding small nondeterministic automata, where minimality is NP-complete and PSPACE-complete, respectively. However, recent work of Radi and Kupferman has shown that minimising Co-Buchi automata with transition based acceptance is tractable, which suggests that the complexity of minimising GFG automata might be cheaper than minimising deterministic automata. We show for the standard state based acceptance that the minimality of a GFG automaton is NP-complete for Buchi, Co-Buchi, and parity GFG automata. The proofs are a surprisingly straight forward generalisation of the proofs from deterministic Buchi automata: they use a similar reductions, and the same hard class of languages.
129 - Adrien Boiret 2014
Automata for unordered unranked trees are relevant for defining schemas and queries for data trees in Json or Xml format. While the existing notions are well-investigated concerning expressiveness, they all lack a proper notion of determinism, which makes it difficult to distinguish subclasses of automata for which problems such as inclusion, equivalence, and minimization can be solved efficiently. In this paper, we propose and investigate different notions of horizontal determinism, starting from automata for unranked trees in which the horizontal evaluation is performed by finite state automata. We show that a restriction to confluent horizontal evaluation leads to polynomial-time emptiness and universality, but still suffers from coNP-completeness of the emptiness of binary intersections. Finally, efficient algorithms can be obtained by imposing an order of horizontal evaluation globally for all automata in the class. Depending on the choice of the order, we obtain different classes of automata, each of which has the same expressiveness as CMso.
We characterize the class of nondeterministic ${omega}$-automata that can be used for the analysis of finite Markov decision processes (MDPs). We call these automata `good-for-MDPs (GFM). We show that GFM automata are closed under classic simulation as well as under more powerful simulation relations that leverage properties of optimal control strategies for MDPs. This closure enables us to exploit state-space reduction techniques, such as those based on direct and delayed simulation, that guarantee simulation equivalence. We demonstrate the promise of GFM automata by defining a new class of automata with favorable properties - they are Buchi automata with low branching degree obtained through a simple construction - and show that going beyond limit-deterministic automata may significantly benefit reinforcement learning.
We approach the task of computing a carefully synchronizing word of optimum length for a given partial deterministic automaton, encoding the problem as an instance of SAT and invoking a SAT solver. Our experiments demonstrate that this approach gives satisfactory results for automata with up to 100 states even if very modest computational resources are used. We compare our results with the ones obtained by the first author for exact synchronization, which is another version of synchronization studied in the literature, and draw some theoretical conclusions.
We show that weighted automata over the field of two elements can be exponentially more compact than non-deterministic finite state automata. To show this, we combine ideas from automata theory and communication complexity. However, weighted automata are also efficiently learnable in Angluins minimal adequate teacher model in a number of queries that is polynomial in the size of the minimal weighted automaton.. We include an algorithm for learning WAs over any field based on a linear algebraic generalization of the Angluin-Schapire algorithm. Together, this produces a surprising result: weighted automata over fields are structured enough that even though they can be very compact, they are still efficiently learnable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا