Do you want to publish a course? Click here

MK-fuzzy Automata and MSO Logics

109   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We introduce MK-fuzzy automata over a bimonoid K which is related to the fuzzification of the McCarthy-Kleene logic. Our automata are inspired by, and intend to contribute to, practical applications being in development in a project on runtime network monitoring based on predicate logic. We investigate closure properties of the class of recognizable MK-fuzzy languages accepted by MK-fuzzy automata as well as of deterministically recognizable MK-fuzzy languages accepted by their deterministic counterparts. Moreover, we establish a Nivat-like result for recognizable MK-fuzzy languages. We introduce an MK-fuzzy MSO logic and show the expressive equivalence of a fragment of this logic with MK-fuzzy automata, i.e., a Buchi type theorem.



rate research

Read More

155 - Pierre Ganty 2021
This volume contains the proceedings of the 12th International Symposium on Games, Automata, Logic and Formal Verification (GandALF 2021). The aim of GandALF 2021 symposium is to bring together researchers from academia and industry which are actively working in the fields of Games, Automata, Logics, and Formal Verification. The idea is to cover an ample spectrum of themes, ranging from theory to applications, and stimulate cross-fertilization.
209 - Hugo Gimbert 2016
The decidability of the distributed version of the Ramadge and Wonham controller synthesis problem,where both the plant and the controllers are modeled as asynchronous automataand the controllers have causal memoryis a challenging open problem.There exist three classes of plants for which the existence of a correct controller with causal memory has been shown decidable: when the dependency graph of actions is series-parallel, when the processes are connectedly communicating and when the dependency graph of processes is a tree. We design a class of plants, called decomposable games, with a decidable controller synthesis problem.This provides a unified proof of the three existing decidability results as well as new examples of decidable plants.
We study the expressiveness and succinctness of good-for-games pushdown automata (GFG-PDA) over finite words, that is, pushdown automata whose nondeterminism can be resolved based on the run constructed so far, but independently of the remainder of the input word. We prove that GFG-PDA recognise more languages than deterministic PDA (DPDA) but not all context-free languages (CFL). This class is orthogonal to unambiguous CFL. We further show that GFG-PDA can be exponentially more succinct than DPDA, while PDA can be double-exponentially more succinct than GFG-PDA. We also study GFGness in visibly pushdown automata (VPA), which enjoy better closure properties than PDA, and for which we show GFGness to be EXPTIME-complete. GFG-VPA can be exponentially more succinct than deterministic VPA, while VPA can be exponentially more succinct than GFG-VPA. Both of these lower bounds are tight. Finally, we study the complexity of resolving nondeterminism in GFG-PDA. Every GFG-PDA has a positional resolver, a function that resolves nondeterminism and that is only dependant on the current configuration. Pushdown transducers are sufficient to implement the resolvers of GFG-VPA, but not those of GFG-PDA. GFG-PDA with finite-state resolvers are determinisable.
The probabilistic bisimilarity distance of Deng et al. has been proposed as a robust quantitative generalization of Segala and Lynchs probabilistic bisimilarity for probabilistic automata. In this paper, we present a characterization of the bisimilarity distance as the solution of a simple stochastic game. The characterization gives us an algorithm to compute the distances by applying Condons simple policy iteration on these games. The correctness of Condons approach, however, relies on the assumption that the games are stopping. Our games may be non-stopping in general, yet we are able to prove termination for this extended class of games. Already other algorithms have been proposed in the literature to compute these distances, with complexity in $textbf{UP} cap textbf{coUP}$ and textbf{PPAD}. Despite the theoretical relevance, these algorithms are inefficient in practice. To the best of our knowledge, our algorithm is the first practical solution. The characterization of the probabilistic bisimilarity distance mentioned above crucially uses a dual presentation of the Hausdorff distance due to Memoli. As an additional contribution, in this paper we show that Memolis result can be used also to prove that the bisimilarity distance bounds the difference in the maximal (or minimal) probability of two states to satisfying arbitrary $omega$-regular properties, expressed, eg., as LTL formulas.
Model checking timed automata becomes increasingly complex with the increase in the number of clocks. Hence it is desirable that one constructs an automaton with the minimum number of clocks possible. The problem of checking whether there exists a timed automaton with a smaller number of clocks such that the timed language accepted by the original automaton is preserved is known to be undecidable. In this paper, we give a construction, which for any given timed automaton produces a timed bisimilar automaton with the least number of clocks. Further, we show that such an automaton with the minimum possible number of clocks can be constructed in time that is doubly exponential in the number of clocks of the original automaton.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا