Do you want to publish a course? Click here

PSD2 Explainable AI Model for Credit Scoring

280   0   0.0 ( 0 )
 Added by Enrico Bagli
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The aim of this project is to develop and test advanced analytical methods to improve the prediction accuracy of Credit Risk Models, preserving at the same time the model interpretability. In particular, the project focuses on applying an explainable machine learning model to bank-related databases. The input data were obtained from open data. Over the total proven models, CatBoost has shown the highest performance. The algorithm implementation produces a GINI of 0.68 after tuning the hyper-parameters. SHAP package is used to provide a global and local interpretation of the model predictions to formulate a human-comprehensive approach to understanding the decision-maker algorithm. The 20 most important features are selected using the Shapley values to present a full human-understandable model that reveals how the attributes of an individual are related to its model prediction.



rate research

Read More

Credit scoring is a major application of machine learning for financial institutions to decide whether to approve or reject a credit loan. For sake of reliability, it is necessary for credit scoring models to be both accurate and globally interpretable. Simple classifiers, e.g., Logistic Regression (LR), are white-box models, but not powerful enough to model complex nonlinear interactions among features. Fortunately, automatic feature crossing is a promising way to find cross features to make simple classifiers to be more accurate without heavy handcrafted feature engineering. However, credit scoring is usually based on different aspects of users, and the data usually contains hundreds of feature fields. This makes existing automatic feature crossing methods not efficient for credit scoring. In this work, we find local piece-wise interpretations in Deep Neural Networks (DNNs) of a specific feature are usually inconsistent in different samples, which is caused by feature interactions in the hidden layers. Accordingly, we can design an automatic feature crossing method to find feature interactions in DNN, and use them as cross features in LR. We give definition of the interpretation inconsistency in DNN, based on which a novel feature crossing method for credit scoring prediction called DNN2LR is proposed. Apparently, the final model, i.e., a LR model empowered with cross features, generated by DNN2LR is a white-box model. Extensive experiments have been conducted on both public and business datasets from real-world credit scoring applications. Experimental shows that, DNN2LR can outperform the DNN model, as well as several feature crossing methods. Moreover, comparing with the state-of-the-art feature crossing methods, i.e., AutoCross, DNN2LR can accelerate the speed for feature crossing by about 10 to 40 times on datasets with large numbers of feature fields.
Credit scoring models, which are among the most potent risk management tools that banks and financial institutes rely on, have been a popular subject for research in the past few decades. Accordingly, many approaches have been developed to address the challenges in classifying loan applicants and improve and facilitate decision-making. The imbalanced nature of credit scoring datasets, as well as the heterogeneous nature of features in credit scoring datasets, pose difficulties in developing and implementing effective credit scoring models, targeting the generalization power of classification models on unseen data. In this paper, we propose the Bagging Supervised Autoencoder Classifier (BSAC) that mainly leverages the superior performance of the Supervised Autoencoder, which learns low-dimensional embeddings of the input data exclusively with regards to the ultimate classification task of credit scoring, based on the principles of multi-task learning. BSAC also addresses the data imbalance problem by employing a variant of the Bagging process based on the undersampling of the majority class. The obtained results from our experiments on the benchmark and real-life credit scoring datasets illustrate the robustness and effectiveness of the Bagging Supervised Autoencoder Classifier in the classification of loan applicants that can be regarded as a positive development in credit scoring models.
Automatic credit scoring, which assesses the probability of default by loan applicants, plays a vital role in peer-to-peer lending platforms to reduce the risk of lenders. Although it has been demonstrated that dynamic selection techniques are effective for classification tasks, the performance of these techniques for credit scoring has not yet been determined. This study attempts to benchmark different dynamic selection approaches systematically for ensemble learning models to accurately estimate the credit scoring task on a large and high-dimensional real-life credit scoring data set. The results of this study indicate that dynamic selection techniques are able to boost the performance of ensemble models, especially in imbalanced training environments.
Typical state of the art flow cytometry data samples consists of measures of more than 100.000 cells in 10 or more features. AI systems are able to diagnose such data with almost the same accuracy as human experts. However, there is one central challenge in such systems: their decisions have far-reaching consequences for the health and life of people, and therefore, the decisions of AI systems need to be understandable and justifiable by humans. In this work, we present a novel explainable AI method, called ALPODS, which is able to classify (diagnose) cases based on clusters, i.e., subpopulations, in the high-dimensional data. ALPODS is able to explain its decisions in a form that is understandable for human experts. For the identified subpopulations, fuzzy reasoning rules expressed in the typical language of domain experts are generated. A visualization method based on these rules allows human experts to understand the reasoning used by the AI system. A comparison to a selection of state of the art explainable AI systems shows that ALPODS operates efficiently on known benchmark data and also on everyday routine case data.
With the growing complexity of deep learning methods adopted in practical applications, there is an increasing and stringent need to explain and interpret the decisions of such methods. In this work, we focus on explainable AI and propose a novel generic and model-agnostic framework for synthesizing input exemplars that maximize a desired response from a machine learning model. To this end, we use a generative model, which acts as a prior for generating data, and traverse its latent space using a novel evolutionary strategy with momentum updates. Our framework is generic because (i) it can employ any underlying generator, e.g. Variational Auto-Encoders (VAEs) or Generative Adversarial Networks (GANs), and (ii) it can be applied to any input data, e.g. images, text samples or tabular data. Since we use a zero-order optimization method, our framework is model-agnostic, in the sense that the machine learning model that we aim to explain is a black-box. We stress out that our novel framework does not require access or knowledge of the internal structure or the training data of the black-box model. We conduct experiments with two generative models, VAEs and GANs, and synthesize exemplars for various data formats, image, text and tabular, demonstrating that our framework is generic. We also employ our prototype synthetization framework on various black-box models, for which we only know the input and the output formats, showing that it is model-agnostic. Moreover, we compare our framework (available at https://github.com/antoniobarbalau/exemplar) with a model-dependent approach based on gradient descent, proving that our framework obtains equally-good exemplars in a shorter computational time.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا