Do you want to publish a course? Click here

A Generic and Model-Agnostic Exemplar Synthetization Framework for Explainable AI

249   0   0.0 ( 0 )
 Added by Antonio Barbalau
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

With the growing complexity of deep learning methods adopted in practical applications, there is an increasing and stringent need to explain and interpret the decisions of such methods. In this work, we focus on explainable AI and propose a novel generic and model-agnostic framework for synthesizing input exemplars that maximize a desired response from a machine learning model. To this end, we use a generative model, which acts as a prior for generating data, and traverse its latent space using a novel evolutionary strategy with momentum updates. Our framework is generic because (i) it can employ any underlying generator, e.g. Variational Auto-Encoders (VAEs) or Generative Adversarial Networks (GANs), and (ii) it can be applied to any input data, e.g. images, text samples or tabular data. Since we use a zero-order optimization method, our framework is model-agnostic, in the sense that the machine learning model that we aim to explain is a black-box. We stress out that our novel framework does not require access or knowledge of the internal structure or the training data of the black-box model. We conduct experiments with two generative models, VAEs and GANs, and synthesize exemplars for various data formats, image, text and tabular, demonstrating that our framework is generic. We also employ our prototype synthetization framework on various black-box models, for which we only know the input and the output formats, showing that it is model-agnostic. Moreover, we compare our framework (available at https://github.com/antoniobarbalau/exemplar) with a model-dependent approach based on gradient descent, proving that our framework obtains equally-good exemplars in a shorter computational time.



rate research

Read More

Model-agnostic interpretation techniques allow us to explain the behavior of any predictive model. Due to different notations and terminology, it is difficult to see how they are related. A unified view on these methods has been missing. We present the generalized SIPA (sampling, intervention, prediction, aggregation) framework of work stages for model-agnostic interpretations and demonstrate how several prominent methods for feature effects can be embedded into the proposed framework. Furthermore, we extend the framework to feature importance computations by pointing out how variance-based and performance-based importance measures are based on the same work stages. The SIPA framework reduces the diverse set of model-agnostic techniques to a single methodology and establishes a common terminology to discuss them in future work.
The aim of this project is to develop and test advanced analytical methods to improve the prediction accuracy of Credit Risk Models, preserving at the same time the model interpretability. In particular, the project focuses on applying an explainable machine learning model to bank-related databases. The input data were obtained from open data. Over the total proven models, CatBoost has shown the highest performance. The algorithm implementation produces a GINI of 0.68 after tuning the hyper-parameters. SHAP package is used to provide a global and local interpretation of the model predictions to formulate a human-comprehensive approach to understanding the decision-maker algorithm. The 20 most important features are selected using the Shapley values to present a full human-understandable model that reveals how the attributes of an individual are related to its model prediction.
Machine Learning and Artificial Intelligence are considered an integral part of the Fourth Industrial Revolution. Their impact, and far-reaching consequences, while acknowledged, are yet to be comprehended. These technologies are very specialized, and few organizations and select highly trained professionals have the wherewithal, in terms of money, manpower, and might, to chart the future. However, concentration of power can lead to marginalization, causing severe inequalities. Regulatory agencies and governments across the globe are creating national policies, and laws around these technologies to protect the rights of the digital citizens, as well as to empower them. Even private, not-for-profit organizations are also contributing to democratizing the technologies by making them emph{accessible} and emph{affordable}. However, accessibility and affordability are all but a few of the facets of democratizing the field. Others include, but not limited to, emph{portability}, emph{explainability}, emph{credibility}, emph{fairness}, among others. As one can imagine, democratizing AI is a multi-faceted problem, and it requires advancements in science, technology and policy. At texttt{mlsquare}, we are developing scientific tools in this space. Specifically, we introduce an opinionated, extensible, texttt{Python} framework that provides a single point of interface to a variety of solutions in each of the categories mentioned above. We present the design details, APIs of the framework, reference implementations, road map for development, and guidelines for contributions.
Radiology has been essential to accurately diagnosing diseases and assessing responses to treatment. The challenge however lies in the shortage of radiologists globally. As a response to this, a number of Artificial Intelligence solutions are being developed. The challenge Artificial Intelligence radiological solutions however face is the lack of a benchmarking and evaluation standard, and the difficulties of collecting diverse data to truly assess the ability of such systems to generalise and properly handle edge cases. We are proposing a radiograph-agnostic platform and framework that would allow any Artificial Intelligence radiological solution to be assessed on its ability to generalise across diverse geographical location, gender and age groups.
Product retrieval systems have served as the main entry for customers to discover and purchase products online. With increasing concerns on the transparency and accountability of AI systems, studies on explainable information retrieval has received more and more attention in the research community. Interestingly, in the domain of e-commerce, despite the extensive studies on explainable product recommendation, the studies of explainable product search is still in an early stage. In this paper, we study how to construct effective explainable product search by comparing model-agnostic explanation paradigms with model-intrinsic paradigms and analyzing the important factors that determine the performance of product search explanations. We propose an explainable product search model with model-intrinsic interpretability and conduct crowdsourcing to compare it with the state-of-the-art explainable product search model with model-agnostic interpretability. We observe that both paradigms have their own advantages and the effectiveness of search explanations on different properties are affected by different factors. For example, explanation fidelity is more important for users overall satisfaction on the system while explanation novelty may be more useful in attracting user purchases. These findings could have important implications for the future studies and design of explainable product search engines.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا