No Arabic abstract
By employing single charge injections with an atomic force microscope, we investigated redox reactions of a molecule on a multilayer insulating film. First, we charged the molecule positively by attaching a single hole. Then we neutralized it by attaching an electron and observed three channels for the neutralization. We rationalize that the three channels correspond to transitions to the neutral ground state, to the lowest energy triplet excited states and to the lowest energy singlet excited states. By single-electron tunneling spectroscopy we measured the energy differences between the transitions obtaining triplet and singlet excited state energies. The experimental values are compared with density functional theory calculations of the excited state energies. Our results show that molecules in excited states can be prepared and that energies of optical gaps can be quantified by controlled single-charge injections. Our work demonstrates the access to, and provides insight into, ubiquitous electron-attachment processes related to excited-state transitions important in electron transfer and molecular optoelectronics phenomena on surfaces.
While offering unprecedented resolution of atomic and electronic structure, Scanning Probe Microscopy techniques have found greater challenges in providing reliable electrostatic characterization at the same scale. In this work, we introduce Electrostatic Discovery Atomic Force Microscopy, a machine learning based method which provides immediate quantitative maps of the electrostatic potential directly from Atomic Force Microscopy images with functionalized tips. We apply this to characterize the electrostatic properties of a variety of molecular systems and compare directly to reference simulations, demonstrating good agreement. This approach opens the door to reliable atomic scale electrostatic maps on any system with minimal computational overhead.
The quantum Hall (QH) effect, a topologically non-trivial quantum phase, expanded and brought into focus the concept of topological order in physics. The topologically protected quantum Hall edge states are of crucial importance to the QH effect but have been measured with limited success. The QH edge states in graphene take on an even richer role as graphene is distinguished by its four-fold degenerate zero energy Landau level (zLL), where the symmetry is broken by electron interactions on top of lattice-scale potentials but has eluded spatial measurements. In this report, we map the quantum Hall broken-symmetry edge states comprising the graphene zLL at integer filling factors of $ u=0,pm 1$ across the quantum Hall edge boundary using atomic force microscopy (AFM). Measurements of the chemical potential resolve the energies of the four-fold degenerate zLL as a function of magnetic field and show the interplay of the moire superlattice potential of the graphene/boron nitride system and spin/valley symmetry-breaking effects in large magnetic fields.
The Transient Fluctuation Theorem is used to calibrate an Atomic Force Microscope by measuring the fluctuations of the work performed by a time dependent force applied between a collo{i}dal probe and the surface. From this measure one can easily extract the value of the interaction force and the relevant parameters of the cantilever. The results of this analysis are compared with those obtained by standard calibration methods. a) present adress: ISIS, Univ.
High-frequency atomic force microscopy has enabled extraordinary new science through large bandwidth, high speed measurements of atomic and molecular structures. However, traditional optical detection schemes restrict the dimensions, and therefore the frequency, of the cantilever - ultimately setting a limit to the time resolution of experiments. Here we demonstrate optomechanical detection of low-mass, high-frequency nanomechanical cantilevers (up to 20 MHz) that surpass these limits, anticipating their use for single-molecule force measurements. These cantilevers achieve 2 fm / sqrt(Hz) displacement noise floors, and force sensitivity down to 132 aN / sqrt(Hz). Furthermore, the ability to resolve both in-plane and out-of-plane motion of our cantilevers opens the door for ultrasensitive multidimensional force spectroscopy, and optomechanical interactions, such as tuning of the cantilever frequency in situ, provide new opportunities in high-speed, high-resolution experiments.
The analysis of the electronic surface properties of transition metal oxides being key materials for future nanoelectronics requires a direct characterization of the conductivity with highest spatial resolution. Using local conductivity atomic force microscopy (LC-AFM) we demonstrate the possibility of recording current maps with true atomic resolution. The application of this technique on surfaces of reduced TiO$_2$ and SrTiO$_3$ reveals that the distribution of surface conductivity has a significant localized nature. Assisted by density functional theory (DFT) we propose that the presence of oxygen vacancies in the surface layer of such materials can introduce short range disturbances of electronic structure with confinement of metallic states on the nanoscale.