Do you want to publish a course? Click here

Effective, Efficient and Robust Neural Architecture Search

191   0   0.0 ( 0 )
 Added by Yu Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent advances in adversarial attacks show the vulnerability of deep neural networks searched by Neural Architecture Search (NAS). Although NAS methods can find network architectures with the state-of-the-art performance, the adversarial robustness and resource constraint are often ignored in NAS. To solve this problem, we propose an Effective, Efficient, and Robust Neural Architecture Search (E2RNAS) method to search a neural network architecture by taking the performance, robustness, and resource constraint into consideration. The objective function of the proposed E2RNAS method is formulated as a bi-level multi-objective optimization problem with the upper-level problem as a multi-objective optimization problem, which is different from existing NAS methods. To solve the proposed objective function, we integrate the multiple-gradient descent algorithm, a widely studied gradient-based multi-objective optimization algorithm, with the bi-level optimization. Experiments on benchmark datasets show that the proposed E2RNAS method can find adversarially robust architectures with optimized model size and comparable classification accuracy.



rate research

Read More

186 - Miao Zhang , Huiqi Li , Shirui Pan 2019
One-Shot Neural architecture search (NAS) attracts broad attention recently due to its capacity to reduce the computational hours through weight sharing. However, extensive experiments on several recent works show that there is no positive correlation between the validation accuracy with inherited weights from the supernet and the test accuracy after re-training for One-Shot NAS. Different from devising a controller to find the best performing architecture with inherited weights, this paper focuses on how to sample architectures to train the supernet to make it more predictive. A single-path supernet is adopted, where only a small part of weights are optimized in each step, to reduce the memory demand greatly. Furthermore, we abandon devising complicated reward based architecture sampling controller, and sample architectures to train supernet based on novelty search. An efficient novelty search method for NAS is devised in this paper, and extensive experiments demonstrate the effectiveness and efficiency of our novelty search based architecture sampling method. The best architecture obtained by our algorithm with the same search space achieves the state-of-the-art test error rate of 2.51% on CIFAR-10 with only 7.5 hours search time in a single GPU, and a validation perplexity of 60.02 and a test perplexity of 57.36 on PTB. We also transfer these search cell structures to larger datasets ImageNet and WikiText-2, respectively.
In this paper, we propose Efficient Progressive Neural Architecture Search (EPNAS), a neural architecture search (NAS) that efficiently handles large search space through a novel progressive search policy with performance prediction based on REINFORCE~cite{Williams.1992.PG}. EPNAS is designed to search target networks in parallel, which is more scalable on parallel systems such as GPU/TPU clusters. More importantly, EPNAS can be generalized to architecture search with multiple resource constraints, eg, model size, compute complexity or intensity, which is crucial for deployment in widespread platforms such as mobile and cloud. We compare EPNAS against other state-of-the-art (SoTA) network architectures (eg, MobileNetV2~cite{mobilenetv2}) and efficient NAS algorithms (eg, ENAS~cite{pham2018efficient}, and PNAS~cite{Liu2017b}) on image recognition tasks using CIFAR10 and ImageNet. On both datasets, EPNAS is superior wrt architecture searching speed and recognition accuracy.
In the recent past, the success of Neural Architecture Search (NAS) has enabled researchers to broadly explore the design space using learning-based methods. Apart from finding better neural network architectures, the idea of automation has also inspired to improve their implementations on hardware. While some practices of hardware machine-learning automation have achieved remarkable performance, the traditional design concept is still followed: a network architecture is first structured with excellent test accuracy, and then compressed and optimized to fit into a target platform. Such a design flow will easily lead to inferior local-optimal solutions. To address this problem, we propose a new framework to jointly explore the space of neural architecture, hardware implementation, and quantization. Our objective is to find a quantized architecture with the highest accuracy that is implementable on given hardware specifications. We employ FPGAs to implement and test our designs with limited loop-up tables (LUTs) and required throughput. Compared to the separate design/searching methods, our framework has demonstrated much better performance under strict specifications and generated designs of higher accuracy by 18% to 68% in the task of classifying CIFAR10 images. With 30,000 LUTs, a light-weight design is found to achieve 82.98% accuracy and 1293 images/second throughput, compared to which, under the same constraints, the traditional method even fails to find a valid solution.
Early methods in the rapidly developing field of neural architecture search (NAS) required fully training thousands of neural networks. To reduce this extreme computational cost, dozens of techniques have since been proposed to predict the final performance of neural architectures. Despite the success of such performance prediction methods, it is not well-understood how different families of techniques compare to one another, due to the lack of an agreed-upon evaluation metric and optimization for different constraints on the initialization time and query time. In this work, we give the first large-scale study of performance predictors by analyzing 31 techniques ranging from learning curve extrapolation, to weight-sharing, to supervised learning, to zero-cost proxies. We test a number of correlation- and rank-based performance measures in a variety of settings, as well as the ability of each technique to speed up predictor-based NAS frameworks. Our results act as recommendations for the best predictors to use in different settings, and we show that certain families of predictors can be combined to achieve even better predictive power, opening up promising research directions. Our code, featuring a library of 31 performance predictors, is available at https://github.com/automl/naslib.
Architectures obtained by Neural Architecture Search (NAS) have achieved highly competitive performance in various computer vision tasks. However, the prohibitive computation demand of forward-backward propagation in deep neural networks and searching algorithms makes it difficult to apply NAS in practice. In this paper, we propose a Multinomial Distribution Learning for extremely effective NAS,which considers the search space as a joint multinomial distribution, i.e., the operation between two nodes is sampled from this distribution, and the optimal network structure is obtained by the operations with the most likely probability in this distribution. Therefore, NAS can be transformed to a multinomial distribution learning problem, i.e., the distribution is optimized to have a high expectation of the performance. Besides, a hypothesis that the performance ranking is consistent in every training epoch is proposed and demonstrated to further accelerate the learning process. Experiments on CIFAR10 and ImageNet demonstrate the effectiveness of our method. On CIFAR-10, the structure searched by our method achieves 2.55% test error, while being 6.0x (only 4 GPU hours on GTX1080Ti) faster compared with state-of-the-art NAS algorithms. On ImageNet, our model achieves 75.2% top1 accuracy under MobileNet settings (MobileNet V1/V2), while being 1.2x faster with measured GPU latency. Test code with pre-trained models are available at https://github.com/tanglang96/MDENAS

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا