Do you want to publish a course? Click here

EPNAS: Efficient Progressive Neural Architecture Search

109   0   0.0 ( 0 )
 Added by Yanqi Zhou
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we propose Efficient Progressive Neural Architecture Search (EPNAS), a neural architecture search (NAS) that efficiently handles large search space through a novel progressive search policy with performance prediction based on REINFORCE~cite{Williams.1992.PG}. EPNAS is designed to search target networks in parallel, which is more scalable on parallel systems such as GPU/TPU clusters. More importantly, EPNAS can be generalized to architecture search with multiple resource constraints, eg, model size, compute complexity or intensity, which is crucial for deployment in widespread platforms such as mobile and cloud. We compare EPNAS against other state-of-the-art (SoTA) network architectures (eg, MobileNetV2~cite{mobilenetv2}) and efficient NAS algorithms (eg, ENAS~cite{pham2018efficient}, and PNAS~cite{Liu2017b}) on image recognition tasks using CIFAR10 and ImageNet. On both datasets, EPNAS is superior wrt architecture searching speed and recognition accuracy.



rate research

Read More

We propose a new method for learning the structure of convolutional neural networks (CNNs) that is more efficient than recent state-of-the-art methods based on reinforcement learning and evolutionary algorithms. Our approach uses a sequential model-based optimization (SMBO) strategy, in which we search for structures in order of increasing complexity, while simultaneously learning a surrogate model to guide the search through structure space. Direct comparison under the same search space shows that our method is up to 5 times more efficient than the RL method of Zoph et al. (2018) in terms of number of models evaluated, and 8 times faster in terms of total compute. The structures we discover in this way achieve state of the art classification accuracies on CIFAR-10 and ImageNet.
186 - Miao Zhang , Huiqi Li , Shirui Pan 2019
One-Shot Neural architecture search (NAS) attracts broad attention recently due to its capacity to reduce the computational hours through weight sharing. However, extensive experiments on several recent works show that there is no positive correlation between the validation accuracy with inherited weights from the supernet and the test accuracy after re-training for One-Shot NAS. Different from devising a controller to find the best performing architecture with inherited weights, this paper focuses on how to sample architectures to train the supernet to make it more predictive. A single-path supernet is adopted, where only a small part of weights are optimized in each step, to reduce the memory demand greatly. Furthermore, we abandon devising complicated reward based architecture sampling controller, and sample architectures to train supernet based on novelty search. An efficient novelty search method for NAS is devised in this paper, and extensive experiments demonstrate the effectiveness and efficiency of our novelty search based architecture sampling method. The best architecture obtained by our algorithm with the same search space achieves the state-of-the-art test error rate of 2.51% on CIFAR-10 with only 7.5 hours search time in a single GPU, and a validation perplexity of 60.02 and a test perplexity of 57.36 on PTB. We also transfer these search cell structures to larger datasets ImageNet and WikiText-2, respectively.
Recent advances in adversarial attacks show the vulnerability of deep neural networks searched by Neural Architecture Search (NAS). Although NAS methods can find network architectures with the state-of-the-art performance, the adversarial robustness and resource constraint are often ignored in NAS. To solve this problem, we propose an Effective, Efficient, and Robust Neural Architecture Search (E2RNAS) method to search a neural network architecture by taking the performance, robustness, and resource constraint into consideration. The objective function of the proposed E2RNAS method is formulated as a bi-level multi-objective optimization problem with the upper-level problem as a multi-objective optimization problem, which is different from existing NAS methods. To solve the proposed objective function, we integrate the multiple-gradient descent algorithm, a widely studied gradient-based multi-objective optimization algorithm, with the bi-level optimization. Experiments on benchmark datasets show that the proposed E2RNAS method can find adversarially robust architectures with optimized model size and comparable classification accuracy.
Neural architecture search (NAS) has been proposed to automatically tune deep neural networks, but existing search algorithms, e.g., NASNet, PNAS, usually suffer from expensive computational cost. Network morphism, which keeps the functionality of a neural network while changing its neural architecture, could be helpful for NAS by enabling more efficient training during the search. In this paper, we propose a novel framework enabling Bayesian optimization to guide the network morphism for efficient neural architecture search. The framework develops a neural network kernel and a tree-structured acquisition function optimization algorithm to efficiently explores the search space. Intensive experiments on real-world benchmark datasets have been done to demonstrate the superior performance of the developed framework over the state-of-the-art methods. Moreover, we build an open-source AutoML system based on our method, namely Auto-Keras. The system runs in parallel on CPU and GPU, with an adaptive search strategy for different GPU memory limits.
244 - Chaoyang He , Haishan Ye , Li Shen 2020
Many recently proposed methods for Neural Architecture Search (NAS) can be formulated as bilevel optimization. For efficient implementation, its solution requires approximations of second-order methods. In this paper, we demonstrate that gradient errors caused by such approximations lead to suboptimality, in the sense that the optimization procedure fails to converge to a (locally) optimal solution. To remedy this, this paper proposes mldas, a mixed-level reformulation for NAS that can be optimized efficiently and reliably. It is shown that even when using a simple first-order method on the mixed-level formulation, mldas can achieve a lower validation error for NAS problems. Consequently, architectures obtained by our method achieve consistently higher accuracies than those obtained from bilevel optimization. Moreover, mldas proposes a framework beyond DARTS. It is upgraded via model size-based search and early stopping strategies to complete the search process in around 5 hours. Extensive experiments within the convolutional architecture search space validate the effectiveness of our approach.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا