Do you want to publish a course? Click here

Efficient Novelty-Driven Neural Architecture Search

187   0   0.0 ( 0 )
 Added by Miao Zhang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

One-Shot Neural architecture search (NAS) attracts broad attention recently due to its capacity to reduce the computational hours through weight sharing. However, extensive experiments on several recent works show that there is no positive correlation between the validation accuracy with inherited weights from the supernet and the test accuracy after re-training for One-Shot NAS. Different from devising a controller to find the best performing architecture with inherited weights, this paper focuses on how to sample architectures to train the supernet to make it more predictive. A single-path supernet is adopted, where only a small part of weights are optimized in each step, to reduce the memory demand greatly. Furthermore, we abandon devising complicated reward based architecture sampling controller, and sample architectures to train supernet based on novelty search. An efficient novelty search method for NAS is devised in this paper, and extensive experiments demonstrate the effectiveness and efficiency of our novelty search based architecture sampling method. The best architecture obtained by our algorithm with the same search space achieves the state-of-the-art test error rate of 2.51% on CIFAR-10 with only 7.5 hours search time in a single GPU, and a validation perplexity of 60.02 and a test perplexity of 57.36 on PTB. We also transfer these search cell structures to larger datasets ImageNet and WikiText-2, respectively.



rate research

Read More

Recent advances in adversarial attacks show the vulnerability of deep neural networks searched by Neural Architecture Search (NAS). Although NAS methods can find network architectures with the state-of-the-art performance, the adversarial robustness and resource constraint are often ignored in NAS. To solve this problem, we propose an Effective, Efficient, and Robust Neural Architecture Search (E2RNAS) method to search a neural network architecture by taking the performance, robustness, and resource constraint into consideration. The objective function of the proposed E2RNAS method is formulated as a bi-level multi-objective optimization problem with the upper-level problem as a multi-objective optimization problem, which is different from existing NAS methods. To solve the proposed objective function, we integrate the multiple-gradient descent algorithm, a widely studied gradient-based multi-objective optimization algorithm, with the bi-level optimization. Experiments on benchmark datasets show that the proposed E2RNAS method can find adversarially robust architectures with optimized model size and comparable classification accuracy.
Early methods in the rapidly developing field of neural architecture search (NAS) required fully training thousands of neural networks. To reduce this extreme computational cost, dozens of techniques have since been proposed to predict the final performance of neural architectures. Despite the success of such performance prediction methods, it is not well-understood how different families of techniques compare to one another, due to the lack of an agreed-upon evaluation metric and optimization for different constraints on the initialization time and query time. In this work, we give the first large-scale study of performance predictors by analyzing 31 techniques ranging from learning curve extrapolation, to weight-sharing, to supervised learning, to zero-cost proxies. We test a number of correlation- and rank-based performance measures in a variety of settings, as well as the ability of each technique to speed up predictor-based NAS frameworks. Our results act as recommendations for the best predictors to use in different settings, and we show that certain families of predictors can be combined to achieve even better predictive power, opening up promising research directions. Our code, featuring a library of 31 performance predictors, is available at https://github.com/automl/naslib.
Neural architecture search (NAS) has been proposed to automatically tune deep neural networks, but existing search algorithms, e.g., NASNet, PNAS, usually suffer from expensive computational cost. Network morphism, which keeps the functionality of a neural network while changing its neural architecture, could be helpful for NAS by enabling more efficient training during the search. In this paper, we propose a novel framework enabling Bayesian optimization to guide the network morphism for efficient neural architecture search. The framework develops a neural network kernel and a tree-structured acquisition function optimization algorithm to efficiently explores the search space. Intensive experiments on real-world benchmark datasets have been done to demonstrate the superior performance of the developed framework over the state-of-the-art methods. Moreover, we build an open-source AutoML system based on our method, namely Auto-Keras. The system runs in parallel on CPU and GPU, with an adaptive search strategy for different GPU memory limits.
Neural Architecture Search (NAS) was first proposed to achieve state-of-the-art performance through the discovery of new architecture patterns, without human intervention. An over-reliance on expert knowledge in the search space design has however led to increased performance (local optima) without significant architectural breakthroughs, thus preventing truly novel solutions from being reached. In this work we 1) are the first to investigate casting NAS as a problem of finding the optimal network generator and 2) we propose a new, hierarchical and graph-based search space capable of representing an extremely large variety of network types, yet only requiring few continuous hyper-parameters. This greatly reduces the dimensionality of the problem, enabling the effective use of Bayesian Optimisation as a search strategy. At the same time, we expand the range of valid architectures, motivating a multi-objective learning approach. We demonstrate the effectiveness of this strategy on six benchmark datasets and show that our search space generates extremely lightweight yet highly competitive models.
244 - Chaoyang He , Haishan Ye , Li Shen 2020
Many recently proposed methods for Neural Architecture Search (NAS) can be formulated as bilevel optimization. For efficient implementation, its solution requires approximations of second-order methods. In this paper, we demonstrate that gradient errors caused by such approximations lead to suboptimality, in the sense that the optimization procedure fails to converge to a (locally) optimal solution. To remedy this, this paper proposes mldas, a mixed-level reformulation for NAS that can be optimized efficiently and reliably. It is shown that even when using a simple first-order method on the mixed-level formulation, mldas can achieve a lower validation error for NAS problems. Consequently, architectures obtained by our method achieve consistently higher accuracies than those obtained from bilevel optimization. Moreover, mldas proposes a framework beyond DARTS. It is upgraded via model size-based search and early stopping strategies to complete the search process in around 5 hours. Extensive experiments within the convolutional architecture search space validate the effectiveness of our approach.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا