Do you want to publish a course? Click here

A control hardware based on a field programmable gate array for experiments in atomic physics

61   0   0.0 ( 0 )
 Added by Marco Prevedelli
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Experiments in Atomic, Molecular, and Optical (AMO) physics require precise and accurate control of digital, analog, and radio frequency (RF) signals. We present a control hardware based on a field programmable gate array (FPGA) core which drives various modules via a simple interface bus. The system supports an operating frequency of 10 MHz and a memory depth of 8 M (2$^{23}$) instructions, both easily scalable. Successive experimental sequences can be stacked with no dead time and synchronized with external events at any instructions. Two or more units can be cascaded and synchronized to a common clock, a feature useful to operate large experimental setups in a modular way.



rate research

Read More

We have implemented a control system for experiments in atomic, molecular and optical physics based on a commercial low-cost board, featuring a field-programmable gate array as part of a system-on-a-chip on which a Linux operating system is running. The board features Gigabit Ethernet, allowing for fast data transmission and operation of remote experimental systems. A single board can control a set of devices generating digital, analog and radio frequency signals with a precise timing given either by an external or internal clock. Contiguous output and input sampling rates of up to 40 MHz are achievable. Several boards can run synchronously with a timing error approaching 1 ns. For this purpose, a novel auto-synchronization scheme is demonstrated, with possible application in complex distributed experimental setups with demanding timing requests.
We describe the technological concept and the first-light results of a 1024-channel spectrometer based on field programmable gate array (FPGA) hardware. This spectrometer is the prototype for the seven beam L-band receiver to be installed at the Effelsberg 100-m telescope in autumn 2005. Using of-the-shelf hardware and software products, we designed and constructed an extremely flexible Fast-Fourier-Transform (FFT) spectrometer with unprecedented sensitivity and dynamic range, which can be considered prototypical for spectrometer development in future radio astronomy.
This report describes a cantilever controller for magnetic resonance force microscopy (MRFM) based on a field programmable gate array (FPGA), along with the hardware and software used to integrate the controller into an experiment. The controller is assembled from a low-cost commercially available software defined radio (SDR) device and libraries of open-source software. The controller includes a digital filter comprising two cascaded second-order sections (biquads), which together can implement transfer functions for optimal cantilever controllers. An appendix in this report shows how to calculate filter coefficients for an optimal controller from measured cantilever characteristics. The controller also includes an input multiplexer and adder used in calibration protocols. Filter coefficients and multiplexer settings can be set and adjusted by control software while an experiment is running. The input is sampled at 64 MHz; the sampling frequency in the filters can be divided down under software control to achieve a good match with filter characterisics. Data reported here were sampled at 500 kHz, chosen for acoustic cantilevers with resonant frequencies near 8 kHz. Inputs are digitized with 12 bits resolution, outputs with 14 bits. The experiment software is organized as a client and server to make it easy to adapt the controller to different experiments. The server encapusulates the details of controller hardware organization, connection technology, filter architecture, and number representation. The same server could be used in any experiment, while a different client encodes the particulars of each experiment.
Computational ghost imaging is a promising technique for single-pixel imaging because it is robust to disturbance and can be operated over broad wavelength bands, unlike common cameras. However, one disadvantage of this method is that it has a long calculation time for image reconstruction. In this paper, we have designed a dedicated calculation circuit that accelerated the process of computational ghost imaging. We implemented this circuit by using a field-programmable gate array, which reduced the calculation time for the circuit compared to a CPU. The dedicated circuit reconstructs images at a frame rate of 300 Hz.
This paper proposes the implementation of programmable threshold logic gate (TLG) crossbar array based on modified TLG cells for high speed processing and computation. The proposed TLG array operation does not depend on input signal and time pulses, comparing to the existing architectures. The circuit is implemented using TSMC $180nm$ CMOS technology. The on-chip area and power dissipation of the simulated $3times 4$ TLG array is $1463 mu m^2$ and $425 mu W$, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا