No Arabic abstract
Modules in all existing speech separation networks can be categorized into single-input-multi-output (SIMO) modules and single-input-single-output (SISO) modules. SIMO modules generate more outputs than input, and SISO modules keep the numbers of input and output the same. While the majority of separation models only contain SIMO architectures, it has also been shown that certain two-stage separation systems integrated with a post-enhancement SISO module can improve the separation quality. Why performance improvements can be achieved by incorporating the SISO modules? Are SIMO modules always necessary? In this paper, we empirically examine those questions by designing models with varying configurations in the SIMO and SISO modules. We show that comparing with the standard SIMO-only design, a mixed SIMO-SISO design with a same model size is able to improve the separation performance especially under low-overlap conditions. We further validate the necessity of SIMO modules and show that SISO-only models are still able to perform separation without sacrificing the performance. The observations allow us to rethink the model design paradigm and present different views on how the separation is performed.
Target speech separation refers to extracting a target speakers voice from an overlapped audio of simultaneous talkers. Previously the use of visual modality for target speech separation has demonstrated great potentials. This work proposes a general multi-modal framework for target speech separation by utilizing all the available information of the target speaker, including his/her spatial location, voice characteristics and lip movements. Also, under this framework, we investigate on the fusion methods for multi-modal joint modeling. A factorized attention-based fusion method is proposed to aggregate the high-level semantic information of multi-modalities at embedding level. This method firstly factorizes the mixture audio into a set of acoustic subspaces, then leverages the targets information from other modalities to enhance these subspace acoustic embeddings with a learnable attention scheme. To validate the robustness of proposed multi-modal separation model in practical scenarios, the system was evaluated under the condition that one of the modalities is temporarily missing, invalid or corrupted. Experiments are conducted on a large-scale audio-visual dataset collected from YouTube (to be released) that spatialized by simulated room impulse responses (RIRs). Experiment results illustrate that our proposed multi-modal framework significantly outperforms single-modal and bi-modal speech separation approaches, while can still support real-time processing.
The continuous speech separation (CSS) is a task to separate the speech sources from a long, partially overlapped recording, which involves a varying number of speakers. A straightforward extension of conventional utterance-level speech separation to the CSS task is to segment the long recording with a size-fixed window and process each window separately. Though effective, this extension fails to model the long dependency in speech and thus leads to sub-optimum performance. The recent proposed dual-path modeling could be a remedy to this problem, thanks to its capability in jointly modeling the cross-window dependency and the local-window processing. In this work, we further extend the dual-path modeling framework for CSS task. A transformer-based dual-path system is proposed, which integrates transform layers for global modeling. The proposed models are applied to LibriCSS, a real recorded multi-talk dataset, and consistent WER reduction can be observed in the ASR evaluation for separated speech. Also, a dual-path transformer equipped with convolutional layers is proposed. It significantly reduces the computation amount by 30% with better WER evaluation. Furthermore, the online processing dual-path models are investigated, which shows 10% relative WER reduction compared to the baseline.
Leveraging additional speaker information to facilitate speech separation has received increasing attention in recent years. Recent research includes extracting target speech by using the target speakers voice snippet and jointly separating all participating speakers by using a pool of additional speaker signals, which is known as speech separation using speaker inventory (SSUSI). However, all these systems ideally assume that the pre-enrolled speaker signals are available and are only evaluated on simple data configurations. In realistic multi-talker conversations, the speech signal contains a large proportion of non-overlapped regions, where we can derive robust speaker embedding of individual talkers. In this work, we adopt the SSUSI model in long recordings and propose a self-informed, clustering-based inventory forming scheme for long recording, where the speaker inventory is fully built from the input signal without the need for external speaker signals. Experiment results on simulated noisy reverberant long recording datasets show that the proposed method can significantly improve the separation performance across various conditions.
Speech separation has been successfully applied as a frontend processing module of conversation transcription systems thanks to its ability to handle overlapped speech and its flexibility to combine with downstream tasks such as automatic speech recognition (ASR). However, a speech separation model often introduces target speech distortion, resulting in a sub-optimum word error rate (WER). In this paper, we describe our efforts to improve the performance of a single channel speech separation system. Specifically, we investigate a two-stage training scheme that firstly applies a feature level optimization criterion for pretraining, followed by an ASR-oriented optimization criterion using an end-to-end (E2E) speech recognition model. Meanwhile, to keep the model light-weight, we introduce a modified teacher-student learning technique for model compression. By combining those approaches, we achieve a absolute average WER improvement of 2.70% and 0.77% using models with less than 10M parameters compared with the previous state-of-the-art results on the LibriCSS dataset for utterance-wise evaluation and continuous evaluation, respectively
Multi-speaker speech recognition has been one of the keychallenges in conversation transcription as it breaks the singleactive speaker assumption employed by most state-of-the-artspeech recognition systems. Speech separation is consideredas a remedy to this problem. Previously, we introduced a sys-tem, calledunmixing,fixed-beamformerandextraction(UFE),that was shown to be effective in addressing the speech over-lap problem in conversation transcription. With UFE, an inputmixed signal is processed by fixed beamformers, followed by aneural network post filtering. Although promising results wereobtained, the system contains multiple individually developedmodules, leading potentially sub-optimum performance. In thiswork, we introduce an end-to-end modeling version of UFE. Toenable gradient propagation all the way, an attentional selectionmodule is proposed, where an attentional weight is learnt foreach beamformer and spatial feature sampled over space. Ex-perimental results show that the proposed system achieves com-parable performance in an offline evaluation with the originalseparate processing-based pipeline, while producing remark-able improvements in an online evaluation.