No Arabic abstract
The energy-time uncertainty relation puts a fundamental limit on the precision of radars and lidars for the estimation of range and velocity. The precision in the estimation of the range (through the time of arrival) and the velocity (through Doppler frequency shifts) of a target are inversely related to each other, and dictated by the bandwidth of the signal. Here we use the theoretical toolbox of multi-parameter quantum metrology to determine the ultimate precision of the simultaneous estimation of range and velocity. We consider the case of a single target as well as a pair of closely separated targets. In the latter case, we focus on the relative position and velocity. We show that the trade-off between the estimation precision of position and velocity is relaxed for entangled probe states, and is completely lifted in the limit of infinite entanglement. In the regime where the two targets are close to each other, the relative position and velocity can be estimated nearly optimally and jointly, even without entanglement, using the measurements determined by the symmetric logarithmic derivatives.
The problem of estimating multiple loss parameters of an optical system using the most general ancilla-assisted parallel strategy is solved under energy constraints. An upper bound on the quantum Fisher information matrix is derived assuming that the environment modes involved in the loss interaction can be accessed. Any pure-state probe that is number-diagonal in the modes interacting with the loss elements is shown to exactly achieve this upper bound even if the environment modes are inaccessible, as is usually the case in practice. We explain this surprising phenomenon, and show that measuring the Schmidt bases of the probe is a parameter-independent optimal measurement. Our results imply that multiple copies of two-mode squeezed vacuum probes with an arbitrarily small nonzero degree of squeezing, or probes prepared using single-photon states and linear optics can achieve quantum-optimal performance in conjunction with on-off detection. We also calculate explicitly the energy-constrained Bures distance between any two product loss channels. Our results are relevant to standoff image sensing, biological imaging, absorption spectroscopy, and photodetector calibration.
By projecting onto complex optical mode profiles, it is possible to estimate arbitrarily small separations between objects with quantum-limited precision, free of uncertainty arising from overlapping intensity profiles. Here we extend these techniques to the time-frequency domain using mode-selective sum-frequency generation with shaped ultrafast pulses. We experimentally resolve temporal and spectral separations between incoherent mixtures of single-photon level signals ten times smaller than their optical bandwidths with a ten-fold improvement in precision over the intensity-only Cramer-Rao bound.
We apply the formalism of quantum estimation theory to extract information about potential collapse mechanisms of the continuous spontaneous localisation (CSL) form. In order to estimate the strength with which the field responsible for the CSL mechanism couples to massive systems, we consider the optomechanical interaction between a mechanical resonator and a cavity field. Our estimation strategy passes through the probing of either the state of the oscillator or that of the electromagnetic field that drives its motion. In particular, we concentrate on all-optical measurements, such as homodyne and heterodyne measurements. We also compare the performances of such strategies with those of a spin-assisted optomechanical system, where the estimation of the CSL parameter is performed through time-gated spin-like measurements.
The performance of a D-Wave Vesuvius quantum annealer was recently compared to a suite of classical algorithms on a class of constraint satisfaction instances based on frustrated loops. However, the construction of these instances leads the maximum coupling strength to increase with problem size. As a result, larger instances are subject to amplified analog control error, and are effectively annealed at higher temperatures in both hardware and software. We generate similar constraint satisfaction instances with limited range of coupling strength and perform a similar comparison to classical algorithms. On these instances the D-Wave Vesuvius processor, run with a fixed 20$mu$s anneal time, shows a scaling advantage over the software solvers for the hardest regime studied. This scaling advantage opens the possibility of quantum speedup on these problems. Our results support the hypothesis that performance of D-Wave Vesuvius processors is heavily influenced by analog control error, which can be reduced and mitigated as the technology matures.
We discuss continuous observation of the momentum of a single atom by employing the high velocity sensitivity of the index of refraction in a driven $Lambda$-system based on electromagnetically induced transparency (EIT). In the ideal limit of unit collection efficiency this provides a quantum limited measurement with minimal backaction on the atomic motion. A feedback loop, which drives the atom with a force proportional to measured signal, provides a cooling mechanism for the atomic motion. We derive the master equation which describes the feedback cooling and show that in the Lamb-Dicke limit the steady state energies are close to the ground state, limited only by the photon collection efficiency. Outside of the Lamb-Dicke regime the predicted temperatures are well below the Doppler limit.