No Arabic abstract
We discuss continuous observation of the momentum of a single atom by employing the high velocity sensitivity of the index of refraction in a driven $Lambda$-system based on electromagnetically induced transparency (EIT). In the ideal limit of unit collection efficiency this provides a quantum limited measurement with minimal backaction on the atomic motion. A feedback loop, which drives the atom with a force proportional to measured signal, provides a cooling mechanism for the atomic motion. We derive the master equation which describes the feedback cooling and show that in the Lamb-Dicke limit the steady state energies are close to the ground state, limited only by the photon collection efficiency. Outside of the Lamb-Dicke regime the predicted temperatures are well below the Doppler limit.
We propose a feasible scheme of quantum state storage and manipulation via electromagnetically induced transparency (EIT) in flexibly $united$ multi-ensembles of three-level atoms. For different atomic array configurations, one can properly steer the signal and the control lights to generate different forms of atomic entanglement within the framework of linear optics. These results shed new light on designing the versatile quantum memory devices by using, e.g., an atomic grid.
A novel method of ground state laser cooling of trapped atoms utilizes the absorption profile of a three (or multi-) level system which is tailored by a quantum interference. With cooling rates comparable to conventional sideband cooling, lower final temperatures may be achieved. The method was experimentally implemented to cool a single Ca$^+$ ion to its vibrational ground state. Since a broad band of vibrational frequencies can be cooled simultaneously, the technique will be particularly useful for the cooling of larger ion strings, thereby being of great practical importance for initializing a quantum register based on trapped ions. We also discuss its application to different level schemes and for ground state cooling of neutral atoms trapped by a far detuned standing wave laser field.
We provide a broad outline of the requirements that should be met by components produced for a Quantum Information Technology (QIT) industry, and we identify electromagnetically induced transparency (EIT) as potentially key enabling science toward the goal of providing widely available few-qubit quantum information processing within the next decade. As a concrete example, we build on earlier work and discuss the implementation of a two-photon controlled phase gate and a one-photon phase gate using the approximate Kerr nonlinearity provided by EIT. We rigorously the dependence of the performance of these gates on atomic dephasing and field detuning and intensity, and we calculate the optimum parameters needed to apply a pi phase shift in a gate of a given fidelity. Although high-fidelity gate operation will be difficult to achieve with realistic system dephasing rates, the moderate fidelities that we believe will be needed for few-qubit QIT seem much more obtainable.
We investigate a hybrid optomechanical system comprised of a mechanical oscillator and an atomic 3-level ensemble within an optical cavity. We show that a suitably tailored cavity field response via Electromagnetically Induced Transparency (EIT) in the atomic medium allows for strong coupling of the mechanical mirror oscillations to the collective atomic ground-state spin. This facilitates ground-state cooling of the mirror motion, quantum state mapping and robust atom-mirror entanglement even for cavity widths larger than the mechanical oscillator frequency.
Penning traps, with their ability to control planar crystals of tens to hundreds of ions, are versatile quantum simulators. Thermal occupations of the motional drumhead modes, transverse to the plane of the ion crystal, degrade the quality of quantum simulations. Laser cooling using electromagnetically induced transparency (EIT cooling) is attractive as an efficient way to quickly initialize the drumhead modes to near ground-state occupations. We numerically investigate the efficiency of EIT cooling of planar ion crystals in a Penning trap, accounting for complications arising from the nature of the trap and from the simultaneous cooling of multiple ions. We show that, in spite of challenges, the large bandwidth of drumhead modes (hundreds of kilohertz) can be rapidly cooled to near ground-state occupations within a few hundred microseconds. Our predictions for the center-of-mass mode include a cooling time constant of tens of microseconds and an enhancement of the cooling rate with increasing number of ions. Successful experimental demonstrations of EIT cooling in the NIST Penning trap [E. Jordan, K. A. Gilmore, A. Shankar, A. Safavi-Naini, M. J. Holland, and J. J. Bollinger, Near ground-state cooling of two-dimensional trapped-ion crystals with more than 100 ions, (2018), submitted.] validate our predictions.