Do you want to publish a course? Click here

Goal-driven Command Recommendations for Analysts

151   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent times have seen data analytics software applications become an integral part of the decision-making process of analysts. The users of these software applications generate a vast amount of unstructured log data. These logs contain clues to the users goals, which traditional recommender systems may find difficult to model implicitly from the log data. With this assumption, we would like to assist the analytics process of a user through command recommendations. We categorize the commands into software and data categories based on their purpose to fulfill the task at hand. On the premise that the sequence of commands leading up to a data command is a good predictor of the latter, we design, develop, and validate various sequence modeling techniques. In this paper, we propose a framework to provide goal-driven data command recommendations to the user by leveraging unstructured logs. We use the log data of a web-based analytics software to train our neural network models and quantify their performance, in comparison to relevant and competitive baselines. We propose a custom loss function to tailor the recommended data commands according to the goal information provided exogenously. We also propose an evaluation metric that captures the degree of goal orientation of the recommendations. We demonstrate the promise of our approach by evaluating the models with the proposed metric and showcasing the robustness of our models in the case of adversarial examples, where the user activity is misaligned with selected goal, through offline evaluation.



rate research

Read More

Data analytics software applications have become an integral part of the decision-making process of analysts. Users of such a software face challenges due to insufficient product and domain knowledge, and find themselves in need of help. To alleviate this, we propose a task-aware command recommendation system, to guide the user on what commands could be executed next. We rely on topic modeling techniques to incorporate information about users task into our models. We also present a help prediction model to detect if a user is in need of help, in which case the system proactively provides the aforementioned command recommendations. We leverage the log data of a web-based analytics software to quantify the superior performance of our neural models, in comparison to competitive baselines.
209 - Rinita Roy , Linus W. Dietz 2019
Mobile proactive tourist recommender systems can support tourists by recommending the best choice depending on different contexts related to herself and the environment. In this paper, we propose to utilize wearable sensors to gather health information about a tourist and use them for recommending tourist activities. We discuss a range of wearable devices, sensors to infer physiological conditions of the users, and exemplify the feasibility using a popular self-quantification mobile app. Our main contribution then comprises a data model to derive relations between the parameters measured by the wearable sensors, such as heart rate, body temperature, blood pressure, and use them to infer the physiological condition of a user. This model can then be used to derive classes of tourist activities that determine which items should be recommended.
Driving and music listening are two inseparable everyday activities for millions of people today in the world. Considering the high correlation between music, mood and driving comfort and safety, it makes sense to use appropriate and intelligent music recommendations based on the mood of drivers and songs in the context of car driving. The objective of this paper is to present the project of a contextual mood-based music recommender system capable of regulating the drivers mood and trying to have a positive influence on her driving behaviour. Here we present the proof of concept of the system and describe the techniques and technologies that are part of it. Further possible future improvements on each of the building blocks are also presented.
The World Wide Web is a vast and continuously changing source of information where searching is a frequent, and sometimes critical, user task. Searching is not always the users primary goal but an ancillary task that is performed to find complementary information allowing to complete another task. In this paper, we explore primary and/or ancillary search tasks and propose an approach for simplifying the user interaction during search tasks. Rather than fo-cusing on dedicated search engines, our approach allows the user to abstract search engines already provided by Web applications into pervasive search services that will be available for performing searches from any other Web site. We also propose to allow users to manage the way in which searching results are displayed and the interaction with them. In order to illustrate the feasibility of this approach, we have built a support tool based on a plug-in architecture that allows users to integrate new search services (created by themselves by means of visual tools) and execute them in the context of both kinds of searches. A case study illustrates the use of these tools. We also present the results of two evaluations that demonstrate the feasibility of the approach and the benefits in its use.
In online platforms, recommender systems are responsible for directing users to relevant contents. In order to enhance the users engagement, recommender systems adapt their output to the reactions of the users, who are in turn affected by the recommended contents. In this work, we study a tractable analytical model of a user that interacts with an online news aggregator, with the purpose of making explicit the feedback loop between the evolution of the users opinion and the personalised recommendation of contents. More specifically, we assume that the user is endowed with a scalar opinion about a certain issue and seeks news about it on a news aggregator: this opinion is influenced by all received news, which are characterized by a binary position on the issue at hand. The user is affected by a confirmation bias, that is, a preference for news that confirm her current opinion. The news aggregator recommends items with the goal of maximizing the number of users clicks (as a measure of her engagement): in order to fulfil its goal, the recommender has to compromise between exploring the users preferences and exploiting what it has learned so far. After defining suitable metrics for the effectiveness of the recommender systems (such as the click-through rate) and for its impact on the opinion, we perform both extensive numerical simulations and a mathematical analysis of the model. We find that personalised recommendations markedly affect the evolution of opinions and favor the emergence of more extreme ones: the intensity of these effects is inherently related to the effectiveness of the recommender. We also show that by tuning the amount of randomness in the recommendation algorithm, one can seek a balance between the effectiveness of the recommendation system and its impact on the opinions.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا