Do you want to publish a course? Click here

Stuck? No worries!: Task-aware Command Recommendation and Proactive Help for Analysts

157   0   0.0 ( 0 )
 Added by Gaurav Verma
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Data analytics software applications have become an integral part of the decision-making process of analysts. Users of such a software face challenges due to insufficient product and domain knowledge, and find themselves in need of help. To alleviate this, we propose a task-aware command recommendation system, to guide the user on what commands could be executed next. We rely on topic modeling techniques to incorporate information about users task into our models. We also present a help prediction model to detect if a user is in need of help, in which case the system proactively provides the aforementioned command recommendations. We leverage the log data of a web-based analytics software to quantify the superior performance of our neural models, in comparison to competitive baselines.



rate research

Read More

Recent times have seen data analytics software applications become an integral part of the decision-making process of analysts. The users of these software applications generate a vast amount of unstructured log data. These logs contain clues to the users goals, which traditional recommender systems may find difficult to model implicitly from the log data. With this assumption, we would like to assist the analytics process of a user through command recommendations. We categorize the commands into software and data categories based on their purpose to fulfill the task at hand. On the premise that the sequence of commands leading up to a data command is a good predictor of the latter, we design, develop, and validate various sequence modeling techniques. In this paper, we propose a framework to provide goal-driven data command recommendations to the user by leveraging unstructured logs. We use the log data of a web-based analytics software to train our neural network models and quantify their performance, in comparison to relevant and competitive baselines. We propose a custom loss function to tailor the recommended data commands according to the goal information provided exogenously. We also propose an evaluation metric that captures the degree of goal orientation of the recommendations. We demonstrate the promise of our approach by evaluating the models with the proposed metric and showcasing the robustness of our models in the case of adversarial examples, where the user activity is misaligned with selected goal, through offline evaluation.
209 - Rinita Roy , Linus W. Dietz 2019
Mobile proactive tourist recommender systems can support tourists by recommending the best choice depending on different contexts related to herself and the environment. In this paper, we propose to utilize wearable sensors to gather health information about a tourist and use them for recommending tourist activities. We discuss a range of wearable devices, sensors to infer physiological conditions of the users, and exemplify the feasibility using a popular self-quantification mobile app. Our main contribution then comprises a data model to derive relations between the parameters measured by the wearable sensors, such as heart rate, body temperature, blood pressure, and use them to infer the physiological condition of a user. This model can then be used to derive classes of tourist activities that determine which items should be recommended.
Like search, a recommendation task accepts an input query or cue and provides desirable items, often based on a ranking function. Such a ranking approach rarely considers explicit dependency among the recommended items. In this work, we propose a generative approach to tag recommendation, where semantic tags are selected one at a time conditioned on the previously generated tags to model inter-dependency among the generated tags. We apply this tag recommendation approach to an Instagram data set where an array of context feature types (image, location, time, and text) are available for posts. To exploit the inter-dependency among the distinct types of features, we adopt a simple yet effective architecture using self-attention, making deep interactions possible. Empirical results show that our method is significantly superior to not only the usual ranking schemes but also autoregressive models for tag recommendation. They indicate that it is critical to fuse mutually supporting features at an early stage to induce extensive and comprehensive view on inter-context interaction in generating tags in a recurrent feedback loop.
Numerous accessibility features have been developed and included in consumer operating systems to provide people with a variety of disabilities additional ways to access computing devices. Unfortunately, many users, especially older adults who are more likely to experience ability changes, are not aware of these features or do not know which combination to use. In this paper, we first quantify this problem via a survey with 100 participants, demonstrating that very few people are aware of built-in accessibility features on their phones. These observations led us to investigate accessibility recommendation as a way to increase awareness and adoption. We developed four prototype recommenders that span different accessibility categories, which we used to collect insights from 20 older adults. Our work demonstrates the need to increase awareness of existing accessibility features on mobile devices, and shows that automated recommendation could help people find beneficial accessibility features.
Recent studies identified that sequential Recommendation is improved by the attention mechanism. By following this development, we propose Relation-Aware Kernelized Self-Attention (RKSA) adopting a self-attention mechanism of the Transformer with augmentation of a probabilistic model. The original self-attention of Transformer is a deterministic measure without relation-awareness. Therefore, we introduce a latent space to the self-attention, and the latent space models the recommendation context from relation as a multivariate skew-normal distribution with a kernelized covariance matrix from co-occurrences, item characteristics, and user information. This work merges the self-attention of the Transformer and the sequential recommendation by adding a probabilistic model of the recommendation task specifics. We experimented RKSA over the benchmark datasets, and RKSA shows significant improvements compared to the recent baseline models. Also, RKSA were able to produce a latent space model that answers the reasons for recommendation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا