Do you want to publish a course? Click here

Unsupervised Multimodal Image Registration with Adaptative Gradient Guidance

96   0   0.0 ( 0 )
 Added by Zhe Xu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Multimodal image registration (MIR) is a fundamental procedure in many image-guided therapies. Recently, unsupervised learning-based methods have demonstrated promising performance over accuracy and efficiency in deformable image registration. However, the estimated deformation fields of the existing methods fully rely on the to-be-registered image pair. It is difficult for the networks to be aware of the mismatched boundaries, resulting in unsatisfactory organ boundary alignment. In this paper, we propose a novel multimodal registration framework, which leverages the deformation fields estimated from both: (i) the original to-be-registered image pair, (ii) their corresponding gradient intensity maps, and adaptively fuses them with the proposed gated fusion module. With the help of auxiliary gradient-space guidance, the network can concentrate more on the spatial relationship of the organ boundary. Experimental results on two clinically acquired CT-MRI datasets demonstrate the effectiveness of our proposed approach.



rate research

Read More

We introduce a learning strategy for contrast-invariant image registration without requiring imaging data. While classical registration methods accurately estimate the spatial correspondence between images, they solve a costly optimization problem for every image pair. Learning-based techniques are fast at test time, but can only register images with image contrast and geometric content that are similar to those available during training. We focus on removing this image-data dependency of learning methods. Our approach leverages a generative model for diverse label maps and images that exposes networks to a wide range of variability during training, forcing them to learn features invariant to image type (contrast). This strategy results in powerful networks trained to generalize to a broad array of real input images. We present extensive experiments, with a focus on 3D neuroimaging, showing that this strategy enables robust registration of arbitrary image contrasts without the need to retrain for new modalities. We demonstrate registration accuracy that most often surpasses the state of the art both within and across modalities, using a single model. Critically, we show that input labels from which we synthesize images need not be of actual anatomy: training on randomly generated geometric shapes also results in competitive registration performance, albeit slightly less accurate, while alleviating the dependency on real data of any kind. Our code is available at: http://voxelmorph.csail.mit.edu
Understanding images without explicit supervision has become an important problem in computer vision. In this paper, we address image captioning by generating language descriptions of scenes without learning from annotated pairs of images and their captions. The core component of our approach is a shared latent space that is structured by visual concepts. In this space, the two modalities should be indistinguishable. A language model is first trained to encode sentences into semantically structured embeddings. Image features that are translated into this embedding space can be decoded into descriptions through the same language model, similarly to sentence embeddings. This translation is learned from weakly paired images and text using a loss robust to noisy assignments and a conditional adversarial component. Our approach allows to exploit large text corpora outside the annotated distributions of image/caption data. Our experiments show that the proposed domain alignment learns a semantically meaningful representation which outperforms previous work.
One of the fundamental challenges in supervised learning for multimodal image registration is the lack of ground-truth for voxel-level spatial correspondence. This work describes a method to infer voxel-level transformation from higher-level correspondence information contained in anatomical labels. We argue that such labels are more reliable and practical to obtain for reference sets of image pairs than voxel-level correspondence. Typical anatomical labels of interest may include solid organs, vessels, ducts, structure boundaries and other subject-specific ad hoc landmarks. The proposed end-to-end convolutional neural network approach aims to predict displacement fields to align multiple labelled corresponding structures for individual image pairs during the training, while only unlabelled image pairs are used as the network input for inference. We highlight the versatility of the proposed strategy, for training, utilising diverse types of anatomical labels, which need not to be identifiable over all training image pairs. At inference, the resulting 3D deformable image registration algorithm runs in real-time and is fully-automated without requiring any anatomical labels or initialisation. Several network architecture variants are compared for registering T2-weighted magnetic resonance images and 3D transrectal ultrasound images from prostate cancer patients. A median target registration error of 3.6 mm on landmark centroids and a median Dice of 0.87 on prostate glands are achieved from cross-validation experiments, in which 108 pairs of multimodal images from 76 patients were tested with high-quality anatomical labels.
77 - Zhe Xu , Jiangpeng Yan , Jie Luo 2020
The loss function of an unsupervised multimodal image registration framework has two terms, i.e., a metric for similarity measure and regularization. In the deep learning era, researchers proposed many approaches to automatically learn the similarity metric, which has been shown effective in improving registration performance. However, for the regularization term, most existing multimodal registration approaches still use a hand-crafted formula to impose artificial properties on the estimated deformation field. In this work, we propose a unimodal cyclic regularization training pipeline, which learns task-specific prior knowledge from simpler unimodal registration, to constrain the deformation field of multimodal registration. In the experiment of abdominal CT-MR registration, the proposed method yields better results over conventional regularization methods, especially for severely deformed local regions.
414 - Sharib Ali , Jens Rittscher 2019
Recent successes in deep learning based deformable image registration (DIR) methods have demonstrated that complex deformation can be learnt directly from data while reducing computation time when compared to traditional methods. However, the reliance on fully linear convolutional layers imposes a uniform sampling of pixel/voxel locations which ultimately limits their performance. To address this problem, we propose a novel approach of learning a continuous warp of the source image. Here, the required deformation vector fields are obtained from a concatenated linear and non-linear convolution layers and a learnable bicubic Catmull-Rom spline resampler. This allows to compute smooth deformation field and more accurate alignment compared to using only linear convolutions and linear resampling. In addition, the continuous warping technique penalizes disagreements that are due to topological changes. Our experiments demonstrate that this approach manages to capture large non-linear deformations and minimizes the propagation of interpolation errors. While improving accuracy the method is computationally efficient. We present comparative results on a range of public 4D CT lung (POPI) and brain datasets (CUMC12, MGH10).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا