Do you want to publish a course? Click here

Towards Unsupervised Image Captioning with Shared Multimodal Embeddings

154   0   0.0 ( 0 )
 Added by Iro Laina
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Understanding images without explicit supervision has become an important problem in computer vision. In this paper, we address image captioning by generating language descriptions of scenes without learning from annotated pairs of images and their captions. The core component of our approach is a shared latent space that is structured by visual concepts. In this space, the two modalities should be indistinguishable. A language model is first trained to encode sentences into semantically structured embeddings. Image features that are translated into this embedding space can be decoded into descriptions through the same language model, similarly to sentence embeddings. This translation is learned from weakly paired images and text using a loss robust to noisy assignments and a conditional adversarial component. Our approach allows to exploit large text corpora outside the annotated distributions of image/caption data. Our experiments show that the proposed domain alignment learns a semantically meaningful representation which outperforms previous work.



rate research

Read More

95 - Zhe Xu , Jiangpeng Yan , Jie Luo 2020
Multimodal image registration (MIR) is a fundamental procedure in many image-guided therapies. Recently, unsupervised learning-based methods have demonstrated promising performance over accuracy and efficiency in deformable image registration. However, the estimated deformation fields of the existing methods fully rely on the to-be-registered image pair. It is difficult for the networks to be aware of the mismatched boundaries, resulting in unsatisfactory organ boundary alignment. In this paper, we propose a novel multimodal registration framework, which leverages the deformation fields estimated from both: (i) the original to-be-registered image pair, (ii) their corresponding gradient intensity maps, and adaptively fuses them with the proposed gated fusion module. With the help of auxiliary gradient-space guidance, the network can concentrate more on the spatial relationship of the organ boundary. Experimental results on two clinically acquired CT-MRI datasets demonstrate the effectiveness of our proposed approach.
Text-based image captioning (TextCap) which aims to read and reason images with texts is crucial for a machine to understand a detailed and complex scene environment, considering that texts are omnipresent in daily life. This task, however, is very challenging because an image often contains complex texts and visual information that is hard to be described comprehensively. Existing methods attempt to extend the traditional image captioning methods to solve this task, which focus on describing the overall scene of images by one global caption. This is infeasible because the complex text and visual information cannot be described well within one caption. To resolve this difficulty, we seek to generate multiple captions that accurately describe different parts of an image in detail. To achieve this purpose, there are three key challenges: 1) it is hard to decide which parts of the texts of images to copy or paraphrase; 2) it is non-trivial to capture the complex relationship between diverse texts in an image; 3) how to generate multiple captions with diverse content is still an open problem. To conquer these, we propose a novel Anchor-Captioner method. Specifically, we first find the important tokens which are supposed to be paid more attention to and consider them as anchors. Then, for each chosen anchor, we group its relevant texts to construct the corresponding anchor-centred graph (ACG). Last, based on different ACGs, we conduct multi-view caption generation to improve the content diversity of generated captions. Experimental results show that our method not only achieves SOTA performance but also generates diverse captions to describe images.
Research in image captioning has mostly focused on English because of the availability of image-caption paired datasets in this language. However, building vision-language systems only for English deprives a large part of the world population of AI technologies benefit. On the other hand, creating image-caption paired datasets for every target language is expensive. In this work, we present a novel unsupervised cross-lingual method to generate image captions in a target language without using any image-caption corpus in the source or target languages. Our method relies on (i) a cross-lingual scene graph to sentence translation process, which learns to decode sentences in the target language from a cross-lingual encoding space of scene graphs using a sentence parallel (bitext) corpus, and (ii) an unsupervised cross-modal feature mapping which seeks to map an encoded scene graph features from image modality to language modality. We verify the effectiveness of our proposed method on the Chinese image caption generation task. The comparisons against several existing methods demonstrate the effectiveness of our approach.
Current supervised sketch-based image retrieval (SBIR) methods achieve excellent performance. However, the cost of data collection and labeling imposes an intractable barrier to practical deployment of real applications. In this paper, we present the first attempt at unsupervised SBIR to remove the labeling cost (category annotations and sketch-photo pairings) that is conventionally needed for training. Existing single-domain unsupervised representation learning methods perform poorly in this application, due to the unique cross-domain (sketch and photo) nature of the problem. We therefore introduce a novel framework that simultaneously performs unsupervised representation learning and sketch-photo domain alignment. Technically this is underpinned by exploiting joint distribution optimal transport (JDOT) to align data from different domains during representation learning, which we extend with trainable cluster prototypes and feature memory banks to further improve scalability and efficacy. Extensive experiments show that our framework achieves excellent performance in the new unsupervised setting, and performs comparably or better than state-of-the-art in the zero-shot setting.
Improving the aesthetic quality of images is challenging and eager for the public. To address this problem, most existing algorithms are based on supervised learning methods to learn an automatic photo enhancer for paired data, which consists of low-quality photos and corresponding expert-retouche
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا