No Arabic abstract
Axion couplings to photons could induce photon-axion conversion in the presence of magnetic fields in the Universe. The conversion could impact various cosmic distance measurements such as luminosity distances to type Ia supernovae and angular distances to galaxy clusters in different ways. We consider different combinations of the most updated distance measurements to constrain the axion-photon coupling. Ignoring the conversion in intracluster medium (ICM), we find the upper bounds on axion-photon couplings to be around $5 times 10^{-12}$ (nG/$B$) GeV$^{-1}$ for axion mass below $5 times 10^{-13}$ eV, where $B$ is the strength of the magnetic field in the intergalactic medium (IGM). When including the conversion in ICM, the upper bound gets stronger and could reach $5 times 10^{-13} $GeV$^{-1}$ for $m_a < 5 times 10^{-12}$ eV. While this stronger bound moderately depends on the ICM modeling, it is independent of the IGM parameters. All the bounds are determined by the shape of Hubble rate as a function of redshift reconstructable from various distance measurements, and insensitive to todays Hubble rate, of which there is a tension between early and late cosmological measurements. As an appendix, we discuss model building challenges to use photon-axion conversion to make type Ia supernovae brighter to alleviate the Hubble problem/crisis.
Axions have for some time been considered a plausible candidate for dark matter. They can be produced through misalignment, but it has been argued that when inflation occurs before a Peccei-Quinn transition, appreciable production can result from cosmic strings. This has been the subject of extensive simulations. But there are reasons to be skeptical about the possible role of axion strings. We review and elaborate on these questions, and argue that parametrically strings are already accounted for by the assumption of random misalignment angles. The arguments are base on considerations of the collective modes of the string solutions, on computations of axion radiation in particular models, and reviews of simulations.
All global symmetries are expected to be explicitly broken by quantum gravitational effects, and yet may play an important role in Particle Physics and Cosmology. As such, any evidence for a well-preserved global symmetry would give insight into an important feature of gravity. We argue that a recently reported $2.4sigma$ detection of cosmic birefringence in the Cosmic Microwave Background could be the first observational indication of a well-preserved (although spontaneously broken) global symmetry in nature. A compelling solution to explain this measurement is a very light pseudoscalar field that interacts with electromagnetism. In order for gravitational effects not to lead to large corrections to the mass of this scalar field, we show that the breaking of global symmetries by gravity should be bounded above. Finally, we highlight that any bound of this type would have clear implications for the construction of theories of quantum gravity, as well as for many particle physics scenarios.
The recent electron recoil excess observed by XENON1T has a possible interpretation in terms of solar axions coupled to electrons. If such axions are still relativistic at recombination they would also leave a cosmic imprint in the form of an additional radiation component, parameterized by an effective neutrino number $Delta N_text{eff}$. We explore minimal scenarios with a detectable signal in future CMB surveys: axions coupled democratically to all fermions, axion-electron coupling generated radiatively, the DFSZ framework for the QCD axion. The predicted $Delta N_text{eff}$ is larger than $0.03-0.04$ for all cases, close to the $2sigma$ forecasted sensitivity of CMB-S4 experiments. This opens the possibility of testing with cosmological observations the solar axion interpretation of the XENON1T excess.
We study the production of exotic millicharged particles (MCPs) from cosmic ray-atmosphere collisions which constitutes a permanent MCP production source for all terrestrial experiments Our calculation of the MCP flux can be used to reinterpret existing limits from experiments such as MACRO and Majorana on an ambient flux of ionizing particles. Large-scale underground neutrino detectors are particularly favorable targets for the resulting MCPs. Using available data from the Super-K experiment, we set new limits on MCPs, which are the best in sensitivity reach for the mass range $0.1 lesssim m_{chi} lesssim 0.5$ GeV, and which are competitive with accelerator-based searches for masses up to 1.5 GeV. Applying these constraints to models where a sub-dominant component of dark matter (DM) is fractionally charged allows us to probe parts of the parameter space that are challenging for conventional direct-detection DM experiments, independently of any assumptions about the DM abundance. These results can be further improved with the next generation of large-scale neutrino detectors.
We study the dynamics of the Peccei-Quinn (PQ) phase transition for the QCD axion. In weakly coupled models the transition is typically second order except in the region of parameters where the PQ symmetry is broken through the Coleman-Weinberg mechanism. In strongly coupled realizations the transition is often first order. We show examples where the phase transition leads to strong supercooling lowering the nucleation temperature and enhancing the stochastic gravitational wave signals. The models predict a frequency peak in the range 100-1000 Hz with an amplitude that is already within the sensitivity of LIGO and can be thoroughly tested with future gravitational wave interferometers.