Do you want to publish a course? Click here

Cosmic Imprints of XENON1T Axions

133   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recent electron recoil excess observed by XENON1T has a possible interpretation in terms of solar axions coupled to electrons. If such axions are still relativistic at recombination they would also leave a cosmic imprint in the form of an additional radiation component, parameterized by an effective neutrino number $Delta N_text{eff}$. We explore minimal scenarios with a detectable signal in future CMB surveys: axions coupled democratically to all fermions, axion-electron coupling generated radiatively, the DFSZ framework for the QCD axion. The predicted $Delta N_text{eff}$ is larger than $0.03-0.04$ for all cases, close to the $2sigma$ forecasted sensitivity of CMB-S4 experiments. This opens the possibility of testing with cosmological observations the solar axion interpretation of the XENON1T excess.



rate research

Read More

We argue that the interpretation in terms of solar axions of the recent XENON1T excess is not tenable when confronted with astrophysical observations of stellar evolution. We discuss the reasons why the emission of a flux of solar axions sufficiently intense to explain the anomalous data would radically alter the distribution of certain type of stars in the color-magnitude diagram in first place, and would also clash with a certain number of other astrophysical observables. Quantitatively, the significance of the discrepancy ranges from $3.3sigma$ for the rate of period change of pulsating White Dwarfs, and exceedes $19sigma$ for the $R$-parameter and for $M_{I,{rm TRGB}}$.
Axion couplings to photons could induce photon-axion conversion in the presence of magnetic fields in the Universe. The conversion could impact various cosmic distance measurements such as luminosity distances to type Ia supernovae and angular distances to galaxy clusters in different ways. We consider different combinations of the most updated distance measurements to constrain the axion-photon coupling. Ignoring the conversion in intracluster medium (ICM), we find the upper bounds on axion-photon couplings to be around $5 times 10^{-12}$ (nG/$B$) GeV$^{-1}$ for axion mass below $5 times 10^{-13}$ eV, where $B$ is the strength of the magnetic field in the intergalactic medium (IGM). When including the conversion in ICM, the upper bound gets stronger and could reach $5 times 10^{-13} $GeV$^{-1}$ for $m_a < 5 times 10^{-12}$ eV. While this stronger bound moderately depends on the ICM modeling, it is independent of the IGM parameters. All the bounds are determined by the shape of Hubble rate as a function of redshift reconstructable from various distance measurements, and insensitive to todays Hubble rate, of which there is a tension between early and late cosmological measurements. As an appendix, we discuss model building challenges to use photon-axion conversion to make type Ia supernovae brighter to alleviate the Hubble problem/crisis.
Axions have for some time been considered a plausible candidate for dark matter. They can be produced through misalignment, but it has been argued that when inflation occurs before a Peccei-Quinn transition, appreciable production can result from cosmic strings. This has been the subject of extensive simulations. But there are reasons to be skeptical about the possible role of axion strings. We review and elaborate on these questions, and argue that parametrically strings are already accounted for by the assumption of random misalignment angles. The arguments are base on considerations of the collective modes of the string solutions, on computations of axion radiation in particular models, and reviews of simulations.
We propose a class of axion models with generation dependent Peccei-Quinn charges for the known fermions that allow to suppress the axion couplings to nucleons and electrons. Astrophysical limits are thus relaxed, allowing for axion masses up to ${cal O}(0.1)$ eV. The axion-photon coupling remains instead sizeable, so that next generation helioscopes will be able to probe this scenario. Astrophobia unavoidably implies flavor violating axion couplings, so that experimental limits on flavour-violating processes can provide complementary probes. The astrophobic axion can be a viable dark matter candidate in the heavy mass window, and can also account for anomalous energy loss in stars.
The mass hierarchy among the three generations of quarks and charged leptons is one of the greatest mysteries in particle physics. In various flavor models, the origin of this phenomenon is attributed to a series of hierarchical spontaneous symmetry breakings, most of which are beyond the reach of particle colliders. We point out that the observation of a multi-peaked stochastic gravitational wave signal from a series of cosmological phase transitions could well be a unique probe of the mechanism behind flavor hierarchies. To illustrate this point, we show how near future ground- and space-based gravitational wave observatories could detect up to three peaks in the recently proposed $PS^3$ model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا