Do you want to publish a course? Click here

Statistical Uncertainty Analysis for Stochastic Simulation

180   0   0.0 ( 0 )
 Added by Wei Xie
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

When we use simulation to evaluate the performance of a stochastic system, the simulation often contains input distributions estimated from real-world data; therefore, there is both simulation and input uncertainty in the performance estimates. Ignoring either source of uncertainty underestimates the overall statistical error. Simulation uncertainty can be reduced by additional computation (e.g., more replications). Input uncertainty can be reduced by collecting more real-world data, when feasible. This paper proposes an approach to quantify overall statistical uncertainty when the simulation is driven by independent parametric input distributions; specifically, we produce a confidence interval that accounts for both simulation and input uncertainty by using a metamodel-assisted bootstrapping approach. The input uncertainty is measured via bootstrapping, an equation-based stochastic kriging metamodel propagates the input uncertainty to the output mean, and both simulation and metamodel uncertainty are derived using properties of the metamodel. A variance decomposition is proposed to estimate the relative contribution of input to overall uncertainty; this information indicates whether the overall uncertainty can be significantly reduced through additional simulation alone. Asymptotic analysis provides theoretical support for our approach, while an empirical study demonstrates that it has good finite-sample performance.

rate research

Read More

89 - Lu Zou , Xiaowei Zhang 2018
Stochastic kriging is a popular metamodeling technique for representing the unknown response surface of a simulation model. However, the simulation model may be inadequate in the sense that there may be a non-negligible discrepancy between it and the real system of interest. Failing to account for the model discrepancy may conceivably result in erroneous prediction of the real systems performance and mislead the decision-making process. This paper proposes a metamodel that extends stochastic kriging to incorporate the model discrepancy. Both the simulation outputs and the real data are used to characterize the model discrepancy. The proposed metamodel can provably enhance the prediction of the real systems performance. We derive general results for experiment design and analysis, and demonstrate the advantage of the proposed metamodel relative to competing methods. Finally, we study the effect of Common Random Numbers (CRN). The use of CRN is well known to be detrimental to the prediction accuracy of stochastic kriging in general. By contrast, we show that the effect of CRN in the new context is substantially more complex. The use of CRN can be either detrimental or beneficial depending on the interplay between the magnitude of the observation errors and other parameters involved.
Inference on unknown quantities in dynamical systems via observational data is essential for providing meaningful insight, furnishing accurate predictions, enabling robust control, and establishing appropriate designs for future experiments. Merging mathematical theory with empirical measurements in a statistically coherent way is critical and challenges abound, e.g.,: ill-posedness of the parameter estimation problem, proper regularization and incorporation of prior knowledge, and computational limitations on full uncertainty qualification. To address these issues, we propose a new method for learning parameterized dynamical systems from data. In many ways, our proposal turns the canonical framework on its head. We first fit a surrogate stochastic process to observational data, enforcing prior knowledge (e.g., smoothness), and coping with challenging data features like heteroskedasticity, heavy tails and censoring. Then, samples of the stochastic process are used as surrogate data and point estimates are computed via ordinary point estimation methods in a modular fashion. An attractive feature of this approach is that it is fully Bayesian and simultaneously parallelizable. We demonstrate the advantages of our new approach on a predator prey simulation study and on a real world application involving within-host influenza virus infection data paired with a viral kinetic model.
Gaussian process (GP) regression in large-data contexts, which often arises in surrogate modeling of stochastic simulation experiments, is challenged by cubic runtimes. Coping with input-dependent noise in that setting is doubly so. Recent advances target reduced computational complexity through local approximation (e.g., LAGP) or otherwise induced sparsity. Yet these do not economically accommodate a common design feature when attempting to separate signal from noise. Replication can offer both statistical and computational efficiencies, motivating several extensions to the local surrogate modeling toolkit. Introducing a nugget into a local kernel structure is just the first step. We argue that a new inducing point formulation (LIGP), already preferred over LAGP on the speed-vs-accuracy frontier, conveys additional advantages when replicates are involved. Woodbury identities allow local kernel structure to be expressed in terms of unique design locations only, increasing the amount of data (i.e., the neighborhood size) that may be leveraged without additional flops. We demonstrate that this upgraded LIGP provides more accurate prediction and uncertainty quantification compared to several modern alternatives. Illustrations are provided on benchmark data, real-world simulation experiments on epidemic management and ocean oxygen concentration, and in an options pricing control framework.
Taking the Fourier integral theorem as our starting point, in this paper we focus on natural Monte Carlo and fully nonparametric estimators of multivariate distributions and conditional distribution functions. We do this without the need for any estimated covariance matrix or dependence structure between variables. These aspects arise immediately from the integral theorem. Being able to model multivariate data sets using conditional distribution functions we can study a number of problems, such as prediction for Markov processes, estimation of mixing distribution functions which depend on covariates, and general multivariate data. Estimators are explicit Monte Carlo based and require no recursive or iterative algorithms.
Causal mediation analysis has historically been limited in two important ways: (i) a focus has traditionally been placed on binary treatments and static interventions, and (ii) direct and indirect effect decompositions have been pursued that are only identifiable in the absence of intermediate confounders affected by treatment. We present a theoretical study of an (in)direct effect decomposition of the population intervention effect, defined by stochastic interventions jointly applied to the treatment and mediators. In contrast to existing proposals, our causal effects can be evaluated regardless of whether a treatment is categorical or continuous and remain well-defined even in the presence of intermediate confounders affected by treatment. Our (in)direct effects are identifiable without a restrictive assumption on cross-world counterfactual independencies, allowing for substantive conclusions drawn from them to be validated in randomized controlled trials. Beyond the novel effects introduced, we provide a careful study of nonparametric efficiency theory relevant for the construction of flexible, multiply robust estimators of our (in)direct effects, while avoiding undue restrictions induced by assuming parametric models of nuisance parameter functionals. To complement our nonparametric estimation strategy, we introduce inferential techniques for constructing confidence intervals and hypothesis tests, and discuss open source software implementing the proposed methodology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا