Do you want to publish a course? Click here

Parameter and Uncertainty Estimation for Dynamical Systems Using Surrogate Stochastic Processes

78   0   0.0 ( 0 )
 Added by Matthias Chung
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Inference on unknown quantities in dynamical systems via observational data is essential for providing meaningful insight, furnishing accurate predictions, enabling robust control, and establishing appropriate designs for future experiments. Merging mathematical theory with empirical measurements in a statistically coherent way is critical and challenges abound, e.g.,: ill-posedness of the parameter estimation problem, proper regularization and incorporation of prior knowledge, and computational limitations on full uncertainty qualification. To address these issues, we propose a new method for learning parameterized dynamical systems from data. In many ways, our proposal turns the canonical framework on its head. We first fit a surrogate stochastic process to observational data, enforcing prior knowledge (e.g., smoothness), and coping with challenging data features like heteroskedasticity, heavy tails and censoring. Then, samples of the stochastic process are used as surrogate data and point estimates are computed via ordinary point estimation methods in a modular fashion. An attractive feature of this approach is that it is fully Bayesian and simultaneously parallelizable. We demonstrate the advantages of our new approach on a predator prey simulation study and on a real world application involving within-host influenza virus infection data paired with a viral kinetic model.



rate research

Read More

In this paper we develop a nonparametric maximum likelihood estimate of the mixing distribution of the parameters of a linear stochastic dynamical system. This includes, for example, pharmacokinetic population models with process and measurement noise that are linear in the state vector, input vector and the process and measurement noise vectors. Most research in mixing distributions only considers measurement noise. The advantages of the models with process noise are that, in addition to the measurements errors, the uncertainties in the model itself are taken into the account. For example, for deterministic pharmacokinetic models, errors in dose amounts, administration times, and timing of blood samples are typically not included. For linear stochastic models, we use linear Kalman-Bucy filtering to calculate the likelihood of the observations and then employ a nonparametric adaptive grid algorithm to find the nonparametric maximum likelihood estimate of the mixing distribution. We then use the directional derivatives of the estimated mixing distribution to show that the result found attains a global maximum. A simple example using a one compartment pharmacokinetic linear stochastic model is given. In addition to population pharmacokinetics, this research also applies to empirical Bayes estimation.
140 - Xianliang Gong , Yulin Pan 2021
We consider a dynamical system with two sources of uncertainties: (1) parameterized input with a known probability distribution and (2) stochastic input-to-response (ItR) function with heteroscedastic randomness. Our purpose is to efficiently quantify the extreme response probability when the ItR function is expensive to evaluate. The problem setup arises often in physics and engineering problems, with randomness in ItR coming from either intrinsic uncertainties (say, as a solution to a stochastic equation) or additional (critical) uncertainties that are not incorporated in the input parameter space. To reduce the required sampling numbers, we develop a sequential Bayesian experimental design method leveraging the variational heteroscedastic Gaussian process regression (VHGPR) to account for the stochastic ItR, along with a new criterion to select the next-best samples sequentially. The validity of our new method is first tested in two synthetic problems with the stochastic ItR functions defined artificially. Finally, we demonstrate the application of our method to an engineering problem of estimating the extreme ship motion probability in ensemble of wave groups, where the uncertainty in ItR naturally originates from the uncertain initial condition of ship motion in each wave group.
Parameters of the mathematical model describing many practical dynamical systems are prone to vary due to aging or renewal, wear and tear, as well as changes in environmental or service conditions. These variabilities will adversely affect the accuracy of state estimation. In this paper, we introduce SSUE: Simultaneous State and Uncertainty Estimation for quantifying parameter uncertainty while simultaneously estimating the internal state of a system. Our approach involves the development of a Bayesian framework that recursively updates the posterior joint density of the unknown state vector and parameter uncertainty. To execute the framework for practical implementation, we develop a computational algorithm based on maximum a posteriori estimation and the numerical Newtons method. Observability analysis is conducted for linear systems, and its relation with the consistency of the estimation of the uncertaintys location is unveiled. Additional simulation results are provided to demonstrate the effectiveness of the proposed SSUE approach.
Nowadays, the confidentiality of data and information is of great importance for many companies and organizations. For this reason, they may prefer not to release exact data, but instead to grant researchers access to approximate data. For example, rather than providing the exact income of their clients, they may only provide researchers with grouped data, that is, the number of clients falling in each of a set of non-overlapping income intervals. The challenge is to estimate the mean and variance structure of the hidden ungrouped data based on the observed grouped data. To tackle this problem, this work considers the exact observed data likelihood and applies the Expectation-Maximization (EM) and Monte-Carlo EM (MCEM) algorithms for cases where the hidden data follow a univariate, bivariate, or multivariate normal distribution. The results are then compared with the case of ignoring the grouping and applying regular maximum likelihood. The well-known Galton data and simulated datasets are used to evaluate the properties of the proposed EM and MCEM algorithms.
266 - Libo Sun , Chihoon Lee , 2013
We consider the problem of estimating parameters of stochastic differential equations (SDEs) with discrete-time observations that are either completely or partially observed. The transition density between two observations is generally unknown. We propose an importance sampling approach with an auxiliary parameter when the transition density is unknown. We embed the auxiliary importance sampler in a penalized maximum likelihood framework which produces more accurate and computationally efficient parameter estimates. Simulation studies in three different models illustrate promising improvements of the new penalized simulated maximum likelihood method. The new procedure is designed for the challenging case when some state variables are unobserved and moreover, observed states are sparse over time, which commonly arises in ecological studies. We apply this new approach to two epidemics of chronic wasting disease in mule deer.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا