Do you want to publish a course? Click here

On Possibilistic Conditions to Contextuality and Nonlocality

118   0   0.0 ( 0 )
 Added by Leonardo Santos
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Contextuality and nonlocality are non-classical properties exhibited by quantum statistics whose implications profoundly impact both foundations and applications of quantum theory. In this paper we provide some insights into logical contextuality and inequality-free proofs. The former can be understood as the possibility version of contextuality, while the latter refers to proofs of quantum contextuality/nonlocality that are not based on violations of some noncontextuality (or Bell) inequality. The present work aims to build a bridge between these two concepts from what we call possibilistic paradoxes, which are sets of possibilistic conditions whose occurrence implies contextuality/nonlocality. As main result, we demonstrate the existence of possibilistic paradoxes whose occurrence is a necessary and sufficient condition for logical contextuality in a very important class of scenarios. Finally, we discuss some interesting consequences arising from the completeness of these possibilistic paradoxes.



rate research

Read More

Contextuality is a non-classical behaviour that can be exhibited by quantum systems. It is increasingly studied for its relationship to quantum-over-classical advantages in informatic tasks. To date, it has largely been studied in discrete variable scenarios, where observables take values in discrete and usually finite sets. Practically, on the other hand, continuous-variable scenarios offer some of the most promising candidates for implementing quantum computations and informatic protocols. Here we set out a framework for treating contextuality in continuous-variable scenarios. It is shown that the Fine--Abramsky--Brandenburger theorem extends to this setting, an important consequence of which is that nonlocality can be viewed as a special case of contextuality, as in the discrete case. The contextual fraction, a quantifiable measure of contextuality that bears a precise relationship to Bell inequality violations and quantum advantages, can also be defined in this setting. It is shown to be a non-increasing monotone with respect to classical operations that include binning to discretise data. Finally, we consider how the contextual fraction can be formulated as an infinite linear program, and calculated with increasing accuracy using semi-definite programming approximations.
Everyday experience supports the existence of physical properties independent of observation in strong contrast to the predictions of quantum theory. In particular, existence of physical properties that are independent of the measurement context is prohibited for certain quantum systems. This property is known as contextuality. This paper studies whether the process of decay in space-time generally destroys the ability of revealing contextuality. We find that in the most general situation the decay property does not diminish this ability. However, applying certain constraints due to the space-time structure either on the time evolution of the decaying system or on the measurement procedure, the criteria revealing contextuality become inherently dependent on the decay property or an impossibility. In particular, we derive how the context-revealing setup known as Bells nonlocality tests changes for decaying quantum systems. Our findings illustrate the interdependence between hidden and local hidden parameter theories and the role of time.
Classical realism demands that system properties exist independently of whether they are measured, while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Bell-Kochen-Specker theorem states that noncontextual realism cannot reproduce the measurement statistics of a single three-level quantum system (qutrit). Noncontextual realistic models may thus be tested using a single qutrit without relying on the notion of quantum entanglement in contrast to Bell inequality tests. It is challenging to refute such models experimentally, since imperfections may introduce loopholes that enable a realist interpretation. Here we use a superconducting qutrit with deterministic, binary-outcome readouts to violate a noncontextuality inequality while addressing the detection, individual-existence and compatibility loopholes. This evidence of state-dependent contextuality also demonstrates the fitness of superconducting quantum circuits for fault-tolerant quantum computation in surface-code architectures, currently the most promising route to scalable quantum computing.
166 - Elie Wolfe 2014
This work develops analytic methods to quantitatively demarcate quantum reality from its subset of classical phenomenon, as well as from the superset of general probabilistic theories. Regarding quantum nonlocality, we discuss how to determine the quantum limit of Bell-type linear inequalities. In contrast to semidefinite programming approaches, our method allows for the consideration of inequalities with abstract weights, by means of leveraging the Hermiticity of quantum states. Recognizing that classical correlations correspond to measurements made on separable states, we also introduce a practical method for obtaining sufficient separability criteria. We specifically vet the candidacy of driven and undriven superradiance as schema for entanglement generation. We conclude by reviewing current approaches to quantum contextuality, emphasizing the operational distinction between nonlocal and contextual quantum statistics. We utilize our abstractly-weighted linear quantum bounds to explicitly demonstrate a set of conditional probability distributions which are simultaneously compatible with quantum contextuality while being incompatible with quantum nonlocality. It is noted that this novel statistical regime implies an experimentally-testable target for the Consistent Histories theory of quantum gravity.
72 - Matt Jones 2019
A primary goal in recent research on contextuality has been to extend this concept to cases of inconsistent connectedness, where observables have different distributions in different contexts. This article proposes a solution within the framework of probabilistic causal models, which extend hidden-variables theories, and then demonstrates an equivalence to the contextuality-by-default (CbD) framework. CbD distinguishes contextuality from direct influences of context on observables, defining the latter purely in terms of probability distributions. Here we take a causal view of direct influences, defining direct influence within any causal model as the probability of all latent states of the system in which a change of context changes the outcome of a measurement. Model-based contextuality (M-contextuality) is then defined as the necessity of stronger direct influences to model a full system than when considered individually. For consistently connected systems, M-contextuality agrees with standard contextuality. For general systems, it is proved that M-contextuality is equivalent to the property that any model of a system must contain hidden influences, meaning direct influences that go in opposite directions for different latent states, or equivalently signaling between observers that carries no information. This criterion can be taken as formalizing the no-conspiracy principle that has been proposed in connection with CbD. M-contextuality is then proved to be equivalent to CbD-contextuality, thus providing a new interpretation of CbD-contextuality as the non-existence of a model for a system without hidden direct influences.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا