Do you want to publish a course? Click here

Contextuality and Nonlocality in Decaying Multipartite Systems

137   0   0.0 ( 0 )
 Added by Beatrix Hiesmayr C.
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Everyday experience supports the existence of physical properties independent of observation in strong contrast to the predictions of quantum theory. In particular, existence of physical properties that are independent of the measurement context is prohibited for certain quantum systems. This property is known as contextuality. This paper studies whether the process of decay in space-time generally destroys the ability of revealing contextuality. We find that in the most general situation the decay property does not diminish this ability. However, applying certain constraints due to the space-time structure either on the time evolution of the decaying system or on the measurement procedure, the criteria revealing contextuality become inherently dependent on the decay property or an impossibility. In particular, we derive how the context-revealing setup known as Bells nonlocality tests changes for decaying quantum systems. Our findings illustrate the interdependence between hidden and local hidden parameter theories and the role of time.



rate research

Read More

Contextuality is a non-classical behaviour that can be exhibited by quantum systems. It is increasingly studied for its relationship to quantum-over-classical advantages in informatic tasks. To date, it has largely been studied in discrete variable scenarios, where observables take values in discrete and usually finite sets. Practically, on the other hand, continuous-variable scenarios offer some of the most promising candidates for implementing quantum computations and informatic protocols. Here we set out a framework for treating contextuality in continuous-variable scenarios. It is shown that the Fine--Abramsky--Brandenburger theorem extends to this setting, an important consequence of which is that nonlocality can be viewed as a special case of contextuality, as in the discrete case. The contextual fraction, a quantifiable measure of contextuality that bears a precise relationship to Bell inequality violations and quantum advantages, can also be defined in this setting. It is shown to be a non-increasing monotone with respect to classical operations that include binning to discretise data. Finally, we consider how the contextual fraction can be formulated as an infinite linear program, and calculated with increasing accuracy using semi-definite programming approximations.
In this paper, we generalize the concept of strong quantum nonlocality from two aspects. Firstly in $mathbb{C}^dotimesmathbb{C}^dotimesmathbb{C}^d$ quantum system, we present a construction of strongly nonlocal quantum states containing $6(d-1)^2$ orthogonal product states, which is one order of magnitude less than the number of basis states $d^3$. Secondly, we give the explicit form of strongly nonlocal orthogonal product basis in $mathbb{C}^3otimes mathbb{C}^3otimes mathbb{C}^3otimes mathbb{C}^3$ quantum system, where four is the largest known number of subsystems in which there exists strong quantum nonlocality up to now. Both the two results positively answer the open problems in [Halder, textit{et al.}, PRL, 122, 040403 (2019)], that is, there do exist and even smaller number of quantum states can demonstrate strong quantum nonlocality without entanglement.
The nonlocal correlations of multipartite entangled states can be reproduced by a classical model if sufficiently many parties join together or if sufficiently many parties broadcast their measurement inputs. The maximal number m of groups and the minimal number k of broadcasting parties that allow for the reproduction of a given set of correlations quantify their multipartite nonlocal content. We show how upper-bounds on m and lower-bounds on k can be computed from the violation of the Mermin-Svetlichny inequalities. While n-partite GHZ states violate these inequalities maximally, we find that W states violate them only by a very small amount.
Contextuality and nonlocality are non-classical properties exhibited by quantum statistics whose implications profoundly impact both foundations and applications of quantum theory. In this paper we provide some insights into logical contextuality and inequality-free proofs. The former can be understood as the possibility version of contextuality, while the latter refers to proofs of quantum contextuality/nonlocality that are not based on violations of some noncontextuality (or Bell) inequality. The present work aims to build a bridge between these two concepts from what we call possibilistic paradoxes, which are sets of possibilistic conditions whose occurrence implies contextuality/nonlocality. As main result, we demonstrate the existence of possibilistic paradoxes whose occurrence is a necessary and sufficient condition for logical contextuality in a very important class of scenarios. Finally, we discuss some interesting consequences arising from the completeness of these possibilistic paradoxes.
Classical realism demands that system properties exist independently of whether they are measured, while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Bell-Kochen-Specker theorem states that noncontextual realism cannot reproduce the measurement statistics of a single three-level quantum system (qutrit). Noncontextual realistic models may thus be tested using a single qutrit without relying on the notion of quantum entanglement in contrast to Bell inequality tests. It is challenging to refute such models experimentally, since imperfections may introduce loopholes that enable a realist interpretation. Here we use a superconducting qutrit with deterministic, binary-outcome readouts to violate a noncontextuality inequality while addressing the detection, individual-existence and compatibility loopholes. This evidence of state-dependent contextuality also demonstrates the fitness of superconducting quantum circuits for fault-tolerant quantum computation in surface-code architectures, currently the most promising route to scalable quantum computing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا