Do you want to publish a course? Click here

Hydrodynamic effective field theory and the analyticity of hydrostatic correlators

182   0   0.0 ( 0 )
 Added by Ashish Shukla
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study one-loop corrections to retarded and symmetric hydrostatic correlation functions within the Schwinger-Keldysh effective field theory framework for relativistic hydrodynamics, focusing on charge diffusion. We first consider the simplified setup with only diffusive charge density fluctuations, and then augment it with momentum fluctuations in a model where the sound modes can be ignored. We show that the loop corrections, which generically induce non-analyticities and long-range effects at finite frequency, non-trivially preserve analyticity of retarded correlation functions in spatial momentum due to the KMS constraint, as a manifestation of thermal screening. For the purposes of this analysis, we develop an interacting field theory for diffusive hydrodynamics, seen as a limit of relativistic hydrodynamics in the absence of temperature and longitudinal velocity fluctuations.



rate research

Read More

81 - Akash Jain 2020
We write down a Schwinger-Keldysh effective field theory for non-relativistic (Galilean) hydrodynamics. We use the null background construction to covariantly couple Galilean field theories to a set of background sources. In this language, Galilean hydrodynamics gets recast as relativistic hydrodynamics formulated on a one-dimension higher spacetime admitting a null Killing vector. This allows us to import the existing field-theoretic techniques for relativistic hydrodynamics into the Galilean setting, with minor modifications to include the additional background vector field. We use this formulation to work out an interacting field theory describing stochastic fluctuations of energy, momentum, and density modes around thermal equilibrium. We also present a translation of our results to the more conventional Newton-Cartan language and discuss how the same can be derived via a non-relativistic limit of the effective field theory for relativistic hydrodynamics.
141 - Ivan Kostov 2019
We construct an effective Quantum Field Theory for the wrapping effects in 1+1 dimensional models of factorised scattering. The recently developed graph-theoretical approach to TBA gives the perturbative desctiption of this QFT. For the sake of simplicity we limit ourselves to scattering matrices for a single neutral particle and no bound state poles, such as the sinh-Gordon one. On the other hand, in view of applications to AdS/CFT, we do not assume that the scattering matrix is of difference type. The effective QFT involves both bosonic and fermionic fields and possesses a symmetry which makes it one-loop exact. The corresponding path integral localises to a critical point determined by the TBA equation.
We study the fundamentals of quantum field theory on a rigid de Sitter space. We show that the perturbative expansion of late-time correlation functions to all orders can be equivalently generated by a non-unitary Lagrangian on a Euclidean AdS geometry. This finding simplifies dramatically perturbative computations, as well as allows us to establish basic properties of these correlators, which comprise a Euclidean CFT. We use this to infer the analytic structure of the spectral density that captures the conformal partial wave expansion of a late-time four-point function, to derive an OPE expansion, and to constrain the operator spectrum. Generically, dimensions and OPE coefficients do not obey the usual CFT notion of unitarity. Instead, unitarity of the de Sitter theory manifests itself as the positivity of the spectral density. This statement does not rely on the use of Euclidean AdS Lagrangians and holds non-perturbatively. We illustrate and check these properties by explicit calculations in a scalar theory by computing first tree-level, and then full one-loop-resummed exchange diagrams. An exchanged particle appears as a resonant feature in the spectral density which can be potentially useful in experimental searches.
We study the spectral representation of finite temperature, out of time ordered (OTO) correlators on the multi-time-fold generalised Schwinger-Keldysh contour. We write the contour-ordered correlators as a sum over time-order permutations acting on a funda- mental array of Wightman correlators. We decompose this Wightman array in a basis of column vectors, which provide a natural generalisation of the familiar retarded-advanced basis in the finite temperature Schwinger-Keldysh formalism. The coefficients of this de- composition take the form of generalised spectral functions, which are Fourier transforms of nested and double commutators. Our construction extends a variety of classical results on spectral functions in the SK formalism at finite temperature to the OTO case.
We discuss the two- and three-point correlators in the two-dimensional three-state Potts model in the high-temperature phase of the model. By using the form factor approach and perturbed conformal field theory methods we are able to describe both the large distance and the short distance behaviours of the correlators. We compare our predictions with a set of high precision Monte-Carlo simulations (performed on the triangular lattice realization of the model) finding a complete agreement in both regimes. In particular we use the two-point correlators to fix the various non-universal constants involved in the comparison (whose determination is one of the results of our analysis) and then use these constants to compare numerical results and theoretical predictions for the three-point correlator with no free parameter. Our results can be used to shed some light on the behaviour of the three-quark correlator in the confining phase of the (2+1)-dimensional SU(3) lattice gauge theory which is related by dimensional reduction to the three-spin correlator in the high-temperature phase of the three-state Potts model. The picture which emerges is that of a smooth crossover between a Delta type law at short distances and a Y type law at large distances.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا