No Arabic abstract
We construct an effective Quantum Field Theory for the wrapping effects in 1+1 dimensional models of factorised scattering. The recently developed graph-theoretical approach to TBA gives the perturbative desctiption of this QFT. For the sake of simplicity we limit ourselves to scattering matrices for a single neutral particle and no bound state poles, such as the sinh-Gordon one. On the other hand, in view of applications to AdS/CFT, we do not assume that the scattering matrix is of difference type. The effective QFT involves both bosonic and fermionic fields and possesses a symmetry which makes it one-loop exact. The corresponding path integral localises to a critical point determined by the TBA equation.
We write down a Schwinger-Keldysh effective field theory for non-relativistic (Galilean) hydrodynamics. We use the null background construction to covariantly couple Galilean field theories to a set of background sources. In this language, Galilean hydrodynamics gets recast as relativistic hydrodynamics formulated on a one-dimension higher spacetime admitting a null Killing vector. This allows us to import the existing field-theoretic techniques for relativistic hydrodynamics into the Galilean setting, with minor modifications to include the additional background vector field. We use this formulation to work out an interacting field theory describing stochastic fluctuations of energy, momentum, and density modes around thermal equilibrium. We also present a translation of our results to the more conventional Newton-Cartan language and discuss how the same can be derived via a non-relativistic limit of the effective field theory for relativistic hydrodynamics.
Based on the inhomogeneous T-Q relation constructed via the off-diagonal Bethe Ansatz, a systematic method for retrieving the Bethe-type eigenstates of integrable models without obvious reference state is developed by employing certain orthogonal basis of the Hilbert space. With the XXZ spin torus model and the open XXX spin-1/2 chain as examples, we show that for a given inhomogeneous T-Q relation and the associated Bethe Ansatz equations, the constructed Bethe-type eigenstate has a well-defined homogeneous limit.
We study one-loop corrections to retarded and symmetric hydrostatic correlation functions within the Schwinger-Keldysh effective field theory framework for relativistic hydrodynamics, focusing on charge diffusion. We first consider the simplified setup with only diffusive charge density fluctuations, and then augment it with momentum fluctuations in a model where the sound modes can be ignored. We show that the loop corrections, which generically induce non-analyticities and long-range effects at finite frequency, non-trivially preserve analyticity of retarded correlation functions in spatial momentum due to the KMS constraint, as a manifestation of thermal screening. For the purposes of this analysis, we develop an interacting field theory for diffusive hydrodynamics, seen as a limit of relativistic hydrodynamics in the absence of temperature and longitudinal velocity fluctuations.
Worldsheet techniques can be used to argue for the integrability of string theory on AdS_5xS^5/Z_S, which is dual to the strongly coupled Z_S-orbifold of N=4 SYM. We analyze the integrability of these field theories in the perturbative regime and construct the relevant Bethe equations.
The exact solutions of the $D^{(1)}_3$ model (or the $so(6)$ quantum spin chain) with either periodic or general integrable open boundary conditions are obtained by using the off-diagonal Bethe Ansatz. From the fusion, the complete operator product identities are obtained, which are sufficient to enable us to determine spectrum of the system. Eigenvalues of the fused transfer matrices are constructed by the $T-Q$ relations for the periodic case and by the inhomogeneous $T-Q$ one for the non-diagonal boundary reflection case. The present method can be generalized to deal with the $D^{(1)}_{n}$ model directly.