Do you want to publish a course? Click here

Effective field theory for non-relativistic hydrodynamics

82   0   0.0 ( 0 )
 Added by Akash Jain
 Publication date 2020
  fields Physics
and research's language is English
 Authors Akash Jain




Ask ChatGPT about the research

We write down a Schwinger-Keldysh effective field theory for non-relativistic (Galilean) hydrodynamics. We use the null background construction to covariantly couple Galilean field theories to a set of background sources. In this language, Galilean hydrodynamics gets recast as relativistic hydrodynamics formulated on a one-dimension higher spacetime admitting a null Killing vector. This allows us to import the existing field-theoretic techniques for relativistic hydrodynamics into the Galilean setting, with minor modifications to include the additional background vector field. We use this formulation to work out an interacting field theory describing stochastic fluctuations of energy, momentum, and density modes around thermal equilibrium. We also present a translation of our results to the more conventional Newton-Cartan language and discuss how the same can be derived via a non-relativistic limit of the effective field theory for relativistic hydrodynamics.



rate research

Read More

75 - Jay Armas , Akash Jain 2020
We formulate the Schwinger-Keldysh effective field theory of hydrodynamics without boost symmetry. This includes a spacetime covariant formulation of classical hydrodynamics without boosts with an additional conserved particle/charge current coupled to Aristotelian background sources. We find that, up to first order in derivatives, the theory is characterised by the thermodynamic equation of state and a total of 29 independent transport coefficients, in particular, 3 hydrostatic, 9 non-hydrostatic non-dissipative, and 17 dissipative. Furthermore, we study the spectrum of linearised fluctuations around anisotropic equilibrium states with non-vanishing fluid velocity. This analysis reveals a pair of sound modes that propagate at different speeds along and opposite to the fluid flow, one charge diffusion mode, and two distinct shear modes along and perpendicular to the fluid velocity. We present these results in a new hydrodynamic frame that is linearly stable irrespective of the boost symmetry in place. This provides a unified covariant stable approach for simultaneously treating Lorentzian, Galilean, and Lifshitz fluids within an effective field theory framework and sets the stage for future studies of non-relativistic intertwined patterns of symmetry breaking.
108 - Akash Jain , Pavel Kovtun 2020
We investigate the effects of stochastic interactions on hydrodynamic correlation functions using the Schwinger-Keldysh effective field theory. We identify new stochastic transport coefficients that are invisible in the classical constitutive relations, but nonetheless affect the late-time behaviour of hydrodynamic correlation functions through loop corrections. These results indicate that classical transport coefficients do not provide a universal characterisation of long-distance, late-time correlations even within the framework of fluctuating hydrodynamics.
136 - Arata Yamamoto 2017
We study relativistic anyon field theory in 1+1 dimensions. While (2+1)-dimensional anyon fields are equivalent to boson or fermion fields coupled with the Chern-Simons gauge fields, (1+1)-dimensional anyon fields are equivalent to boson or fermion fields with many-body interaction. We derive the path integral representation and perform the lattice Monte Carlo simulation.
We study one-loop corrections to retarded and symmetric hydrostatic correlation functions within the Schwinger-Keldysh effective field theory framework for relativistic hydrodynamics, focusing on charge diffusion. We first consider the simplified setup with only diffusive charge density fluctuations, and then augment it with momentum fluctuations in a model where the sound modes can be ignored. We show that the loop corrections, which generically induce non-analyticities and long-range effects at finite frequency, non-trivially preserve analyticity of retarded correlation functions in spatial momentum due to the KMS constraint, as a manifestation of thermal screening. For the purposes of this analysis, we develop an interacting field theory for diffusive hydrodynamics, seen as a limit of relativistic hydrodynamics in the absence of temperature and longitudinal velocity fluctuations.
We investigate a class of exactly solvable quantum quench protocols with a finite quench rate in systems of one dimensional non-relativistic fermions in external harmonic oscillator or inverted harmonic oscillator potentials, with time dependent masses and frequencies. These hamiltonians arise, respectively, in harmonic traps, and the $c=1$ Matrix Model description of two dimensional string theory with time dependent string coupling. We show how the dynamics is determined by a single function of time which satisfies a generalized Ermakov-Pinney equation. The quench protocols we consider asymptote to constant masses and frequencies at early times, and cross or approach a gapless potential. In a right side up harmonic oscillator potential we determine the scaling behavior of the one point function and the entanglement entropy of a subregion by obtaining analytic approximations to the exact answers. The results are consistent with Kibble-Zurek scaling for slow quenches and with perturbation calculations for fast quenches. For cis-critical quench protocols the entanglement entropy oscillates at late times around its initial value. For end-critical protocols the entanglement entropy monotonically goes to zero inversely with time, reflecting the spread of fermions over the entire line. For the inverted harmonic oscillator potential, the dual collective field description is a scalar field in a time dependent metric and dilaton background.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا