Do you want to publish a course? Click here

Observation of topological phase with critical localization in a quasi-periodic lattice

323   0   0.0 ( 0 )
 Added by Teng Xiao
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Disorder and localization have dramatic influence on the topological properties of a quantum system. While strong disorder can close the band gap thus depriving topological materials of topological features, disorder may also induce topology from trivial band structures, wherein topological invariants are shared by completely localized states in real space. Here we experimentally investigate a fundamentally distinct scenario where a topological phase is identified in a critically localized regime, with eigenstates neither fully extended nor completely localized. Adopting the technique of momentum-lattice engineering for ultracold atoms, we implement a one-dimensional, generalized Aubry-Andre model with off-diagonal quasi-periodic disorder in momentum space, and characterize its localization and topological properties through dynamic observables. We then demonstrate the impact of interactions on the critically localized topological state, as a first experimental endeavour toward the clarification of many-body critical phase, the critical analogue of the many-body localized state.



rate research

Read More

Symmetry plays a fundamental role in understanding complex quantum matter, particularly in classifying topological quantum phases, which have attracted great interests in the recent decade. An outstanding example is the time-reversal invariant topological insulator, a symmetry-protected topological (SPT) phase in the symplectic class of the Altland-Zirnbauer classification. We report the observation for ultracold atoms of a noninteracting SPT band in a one-dimensional optical lattice and study quench dynamics between topologically distinct regimes. The observed SPT band can be protected by a magnetic group and a nonlocal chiral symmetry, with the band topology being measured via Bloch states at symmetric momenta. The topology also resides in far-from-equilibrium spin dynamics, which are predicted and observed in experiment to exhibit qualitatively distinct behaviors in quenching to trivial and nontrivial regimes, revealing two fundamental types of spin-relaxation dynamics related to bulk topology. This work opens the way to expanding the scope of SPT physics with ultracold atoms and studying nonequilibrium quantum dynamics in these exotic systems.
We analyze the zero-temperature phases of an array of neutral atoms on the kagome lattice, interacting via laser excitation to atomic Rydberg states. Density-matrix renormalization group calculations reveal the presence of a wide variety of complex solid phases with broken lattice symmetries. In addition, we identify a novel regime with dense Rydberg excitations that has a large entanglement entropy and no local order parameter associated with lattice symmetries. From a mapping to the triangular lattice quantum dimer model, and theories of quantum phase transitions out of the proximate solid phases, we argue that this regime could contain one or more phases with topological order. Our results provide the foundation for theoretical and experimental explorations of crystalline and liquid states using programmable quantum simulators based on Rydberg atom arrays.
Anyons are mainly studied and considered in two spatial dimensions. For fractals, the scaling dimension that characterizes the system can be non integer and can take values between that of a standard one-dimensional or two-dimensional system. Generating Hamiltonians that meet locality conditions and support anyons is not a simple task. Here, we construct a local Hamiltonian on a fractal lattice which realizes physics similar to the fractional quantum Hall effect. The fractal lattice is obtained from a second generation Sierpinski carpet, which has 64 sites, and is characterized by a Hausdorff dimension of 1.89. We demonstrate that the proposed local Hamiltonian acting on the fractal geometry has Laughlin-type topological order by creating anyons and then studying their charge and braiding statistics. We also find that the energy gap between the ground state and the first excited state is approximately three times larger for the fractal lattice than for a standard square lattice with 64 sites, and the model on the fractal lattice is significantly more robust against disorder. We propose a scheme to implement fractal lattices and our proposed local Hamiltonian for ultracold atoms in optical lattices. The discussed scheme could also be utilized to study integer quantum Hall phases and the physics of other quantum systems on fractal lattices.
A large repulsion between particles in a quantum system can lead to their localization, as it happens for the electrons in Mott insulating materials. This paradigm has recently branched out into a new quantum state, the orbital-selective Mott insulator, where electrons in some orbitals are predicted to localize, while others remain itinerant. We provide a direct experimental realization of this phenomenon, that we extend to a more general flavour-selective localization. By using an atom-based quantum simulator, we engineer SU(3) Fermi-Hubbard models breaking their symmetry via a tunable coupling between flavours, observing an enhancement of localization and the emergence of flavour-dependent correlations. Our realization of flavour-selective Mott physics opens the path to the quantum simulation of multicomponent materials, from superconductors to topological insulators.
We report the experimental realization of a topological Creutz ladder for ultracold fermionic atoms in a resonantly driven 1D optical lattice. The two-leg ladder consists of the two lowest orbital states of the optical lattice and the cross inter-leg links are generated via two-photon resonant coupling between the orbitals by periodic lattice shaking. The characteristic pseudo-spin winding in the topologically non-trivial bands of the ladder system is demonstrated using momentum-resolved Ramsey-type interferometric measurements. We discuss a two-tone driving method to extend the inter-leg link control and propose a topological charge pumping scheme for the Creutz ladder system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا