Do you want to publish a course? Click here

NUAA-QMUL at SemEval-2020 Task 8: Utilizing BERT and DenseNet for Internet Meme Emotion Analysis

93   0   0.0 ( 0 )
 Added by Xiaoyu Guo
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper describes our contribution to SemEval 2020 Task 8: Memotion Analysis. Our system learns multi-modal embeddings from text and images in order to classify Internet memes by sentiment. Our model learns text embeddings using BERT and extracts features from images with DenseNet, subsequently combining both features through concatenation. We also compare our results with those produced by DenseNet, ResNet, BERT, and BERT-ResNet. Our results show that image classification models have the potential to help classifying memes, with DenseNet outperforming ResNet. Adding text features is however not always helpful for Memotion Analysis.



rate research

Read More

In this paper, we describe our system for Task 4 of SemEval 2020, which involves differentiating between natural language statements that confirm to common sense and those that do not. The organizers propose three subtasks - first, selecting between two sentences, the one which is against common sense. Second, identifying the most crucial reason why a statement does not make sense. Third, generating novel reasons for explaining the against common sense statement. Out of the three subtasks, this paper reports the system description of subtask A and subtask B. This paper proposes a model based on transformer neural network architecture for addressing the subtasks. The novelty in work lies in the architecture design, which handles the logical implication of contradicting statements and simultaneous information extraction from both sentences. We use a parallel instance of transformers, which is responsible for a boost in the performance. We achieved an accuracy of 94.8% in subtask A and 89% in subtask B on the test set.
167 - Li Yuan , Jin Wang , Xuejie Zhang 2020
In recent years, the growing ubiquity of Internet memes on social media platforms, such as Facebook, Instagram, and Twitter, has become a topic of immense interest. However, the classification and recognition of memes is much more complicated than that of social text since it involves visual cues and language understanding. To address this issue, this paper proposed a parallel-channel model to process the textual and visual information in memes and then analyze the sentiment polarity of memes. In the shared task of identifying and categorizing memes, we preprocess the dataset according to the language behaviors on social media. Then, we adapt and fine-tune the Bidirectional Encoder Representations from Transformers (BERT), and two types of convolutional neural network models (CNNs) were used to extract the features from the pictures. We applied an ensemble model that combined the BiLSTM, BIGRU, and Attention models to perform cross domain suggestion mining. The officially released results show that our system performs better than the baseline algorithm. Our team won nineteenth place in subtask A (Sentiment Classification). The code of this paper is availabled at : https://github.com/YuanLi95/Semveal2020-Task8-emotion-analysis.
Nowadays, offensive content in social media has become a serious problem, and automatically detecting offensive language is an essential task. In this paper, we build an offensive language detection system, which combines multi-task learning with BERT-based models. Using a pre-trained language model such as BERT, we can effectively learn the representations for noisy text in social media. Besides, to boost the performance of offensive language detection, we leverage the supervision signals from other related tasks. In the OffensEval-2020 competition, our model achieves 91.51% F1 score in English Sub-task A, which is comparable to the first place (92.23%F1). An empirical analysis is provided to explain the effectiveness of our approaches.
This paper describes our system, Joint Encoders for Stable Suggestion Inference (JESSI), for the SemEval 2019 Task 9: Suggestion Mining from Online Reviews and Forums. JESSI is a combination of two sentence encoders: (a) one using multiple pre-trained word embeddings learned from log-bilinear regression (GloVe) and translation (CoVe) models, and (b) one on top of word encodings from a pre-trained deep bidirectional transformer (BERT). We include a domain adversarial training module when training for out-of-domain samples. Our experiments show that while BERT performs exceptionally well for in-domain samples, several runs of the model show that it is unstable for out-of-domain samples. The problem is mitigated tremendously by (1) combining BERT with a non-BERT encoder, and (2) using an RNN-based classifier on top of BERT. Our final models obtained second place with 77.78% F-Score on Subtask A (i.e. in-domain) and achieved an F-Score of 79.59% on Subtask B (i.e. out-of-domain), even without using any additional external data.
73 - Martin Pomsl 2020
This paper describes the winning contribution to SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection (Subtask 2) handed in by team UG Student Intern. We present an ensemble model that makes predictions based on context-free and context-dependent word representations. The key findings are that (1) context-free word representations are a powerful and robust baseline, (2) a sentence classification objective can be used to obtain useful context-dependent word representations, and (3) combining those representations increases performance on some datasets while decreasing performance on others.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا