No Arabic abstract
In recent years, the growing ubiquity of Internet memes on social media platforms, such as Facebook, Instagram, and Twitter, has become a topic of immense interest. However, the classification and recognition of memes is much more complicated than that of social text since it involves visual cues and language understanding. To address this issue, this paper proposed a parallel-channel model to process the textual and visual information in memes and then analyze the sentiment polarity of memes. In the shared task of identifying and categorizing memes, we preprocess the dataset according to the language behaviors on social media. Then, we adapt and fine-tune the Bidirectional Encoder Representations from Transformers (BERT), and two types of convolutional neural network models (CNNs) were used to extract the features from the pictures. We applied an ensemble model that combined the BiLSTM, BIGRU, and Attention models to perform cross domain suggestion mining. The officially released results show that our system performs better than the baseline algorithm. Our team won nineteenth place in subtask A (Sentiment Classification). The code of this paper is availabled at : https://github.com/YuanLi95/Semveal2020-Task8-emotion-analysis.
This paper describes our contribution to SemEval 2020 Task 8: Memotion Analysis. Our system learns multi-modal embeddings from text and images in order to classify Internet memes by sentiment. Our model learns text embeddings using BERT and extracts features from images with DenseNet, subsequently combining both features through concatenation. We also compare our results with those produced by DenseNet, ResNet, BERT, and BERT-ResNet. Our results show that image classification models have the potential to help classifying memes, with DenseNet outperforming ResNet. Adding text features is however not always helpful for Memotion Analysis.
This paper describes our submission to subtask a and b of SemEval-2020 Task 4. For subtask a, we use a ALBERT based model with improved input form to pick out the common sense statement from two statement candidates. For subtask b, we use a multiple choice model enhanced by hint sentence mechanism to select the reason from given options about why a statement is against common sense. Besides, we propose a novel transfer learning strategy between subtasks which help improve the performance. The accuracy scores of our system are 95.6 / 94.9 on official test set and rank 7$^{th}$ / 2$^{nd}$ on Post-Evaluation leaderboard.
In this paper, we describe our system for Task 4 of SemEval 2020, which involves differentiating between natural language statements that confirm to common sense and those that do not. The organizers propose three subtasks - first, selecting between two sentences, the one which is against common sense. Second, identifying the most crucial reason why a statement does not make sense. Third, generating novel reasons for explaining the against common sense statement. Out of the three subtasks, this paper reports the system description of subtask A and subtask B. This paper proposes a model based on transformer neural network architecture for addressing the subtasks. The novelty in work lies in the architecture design, which handles the logical implication of contradicting statements and simultaneous information extraction from both sentences. We use a parallel instance of transformers, which is responsible for a boost in the performance. We achieved an accuracy of 94.8% in subtask A and 89% in subtask B on the test set.
Nowadays, offensive content in social media has become a serious problem, and automatically detecting offensive language is an essential task. In this paper, we build an offensive language detection system, which combines multi-task learning with BERT-based models. Using a pre-trained language model such as BERT, we can effectively learn the representations for noisy text in social media. Besides, to boost the performance of offensive language detection, we leverage the supervision signals from other related tasks. In the OffensEval-2020 competition, our model achieves 91.51% F1 score in English Sub-task A, which is comparable to the first place (92.23%F1). An empirical analysis is provided to explain the effectiveness of our approaches.
This paper describes the SemEval-2020 shared task Assessing Humor in Edited News Headlines. The tasks dataset contains news headlines in which short edits were applied to make them funny, and the funniness of these edited headlines was rated using crowdsourcing. This task includes two subtasks, the first of which is to estimate the funniness of headlines on a humor scale in the interval 0-3. The second subtask is to predict, for a pair of edite