Do you want to publish a course? Click here

The GALAH+ Survey: Third Data Release

117   0   0.0 ( 0 )
 Added by Sven Buder
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ensemble of chemical element abundance measurements for stars, along with precision distances and orbit properties, provides high-dimensional data to study the evolution of the Milky Way. With this third data release of the Galactic Archaeology with HERMES (GALAH) survey, we publish 678 423 spectra for 588 571 mostly nearby stars (81.2% of stars are within <2 kpc), observed with the HERMES spectrograph at the Anglo-Australian Telescope. This release (hereafter GALAH+ DR3) includes all observations from GALAH Phase 1 (bright, main, and faint survey, 70%), K2-HERMES (17%), TESS-HERMES (5%), and a subset of ancillary observations (8%) including the bulge and >75 stellar clusters. We derive stellar parameters $T_text{eff}$, $log g$, [Fe/H], $v_text{mic}$, $v_text{broad}$ & $v_text{rad}$ using our modified version of the spectrum synthesis code Spectroscopy Made Easy (SME) and 1D MARCS model atmospheres. We break spectroscopic degeneracies in our spectrum analysis with astrometry from $Gaia$ DR2 and photometry from 2MASS. We report abundance ratios [X/Fe] for 30 different elements (11 of which are based on non-LTE computations) covering five nucleosynthetic pathways. We describe validations for accuracy and precision, flagging of peculiar stars/measurements and recommendations for using our results. Our catalogue comprises 65% dwarfs, 34% giants, and 1% other/unclassified stars. Based on unflagged chemical composition and age, we find 62% young low-$alpha$, 9% young high-$alpha$, 27% old high-$alpha$, and 2% stars with $mathrm{[Fe/H]} leq -1$. Based on kinematics, 4% are halo stars. Several Value-Added-Catalogues, including stellar ages and dynamics, updated after $Gaia$ eDR3, accompany this release and allow chrono-chemodynamic analyses, as we showcase.



rate research

Read More

The Galactic Archaeology with HERMES (GALAH) survey is a large-scale stellar spectroscopic survey of the Milky Way and designed to deliver chemical information complementary to a large number of stars covered by the $Gaia$ mission. We present the GALAH second public data release (GALAH DR2) containing 342,682 stars. For these stars, the GALAH collaboration provides stellar parameters and abundances for up to 23 elements to the community. Here we present the target selection, observation, data reduction and detailed explanation of how the spectra were analysed to estimate stellar parameters and element abundances. For the stellar analysis, we have used a multi-step approach. We use the physics-driven spectrum synthesis of Spectroscopy Made Easy (SME) to derive stellar labels ($T_mathrm{eff}$, $log g$, $mathrm{[Fe/H]}$, $mathrm{[X/Fe]}$, $v_mathrm{mic}$, $v sin i$, $A_{K_S}$) for a representative training set of stars. This information is then propagated to the whole survey with the data-driven method of $The~Cannon$. Special care has been exercised in the spectral synthesis to only consider spectral lines that have reliable atomic input data and are little affected by blending lines. Departures from local thermodynamic equilibrium (LTE) are considered for several key elements, including Li, O, Na, Mg, Al, Si, and Fe, using 1D MARCS stellar atmosphere models. Validation tests including repeat observations, Gaia benchmark stars, open and globular clusters, and K2 asteroseismic targets lend confidence in our methods and results. Combining the GALAH DR2 catalogue with the kinematic information from $Gaia$ will enable a wide range of Galactic Archaeology studies, with unprecedented detail, dimensionality, and scope.
87 - Hu Zou , Xu Zhou , Xiaohui Fan 2019
The Beijing-Arizona Sky Survey (BASS) is a wide and deep imaging survey to cover a 5400 deg$^2$ area in the Northern Galactic Cap with the 2.3m Bok telescope using two filters ($g$ and $r$ bands). The Mosaic $z$-band Legacy Survey (MzLS) covers the same area in $z$ band with the 4m Mayall telescope. These two surveys will be used for spectroscopic targeting of the Dark Energy Spectroscopic Instrument (DESI). The BASS survey observations were completed in 2019 March. This paper describes the third data release (DR3) of BASS, which contains the photometric data from all BASS and MzLS observations between 2015 January and 2019 March. The median astrometric precision relative to {it Gaia} positions is about 17 mas and the median photometric offset relative to the PanSTARRS1 photometry is within 5 mmag. The median $5sigma$ AB magnitude depths for point sources are 24.2, 23.6, and 23.0 mag for $g$, $r$, and $z$ bands, respectively. The photometric depth within the survey area is highly homogeneous, with the difference between the 20% and 80% depth less than 0.3 mag. The DR3 data, including raw data, calibrated single-epoch images, single-epoch photometric catalogs, stacked images, and co-added photometric catalogs, are publicly accessible at url{http://batc.bao.ac.cn/BASS/doku.php?id=datarelease:home}.
The Kilo-Degree Survey (KiDS) is an ongoing optical wide-field imaging survey with the OmegaCAM camera at the VLT Survey Telescope. It aims to image 1500 square degrees in four filters (ugri). The core science driver is mapping the large-scale matter distribution in the Universe, using weak lensing shear and photometric redshift measurements. Further science cases include galaxy evolution, Milky Way structure, detection of high-redshift clusters, and finding rare sources such as strong lenses and quasars. Here we present the third public data release (DR3) and several associated data products, adding further area, homogenized photometric calibration, photometric redshifts and weak lensing shear measurements to the first two releases. A dedicated pipeline embedded in the Astro-WISE information system is used for the production of the main release. Modifications with respect to earlier releases are described in detail. Photometric redshifts have been derived using both Bayesian template fitting, and machine-learning techniques. For the weak lensing measurements, optimized procedures based on the THELI data reduction and lensfit shear measurement packages are used. In DR3 stacked ugri images, weight maps, masks, and source lists for 292 new survey tiles (~300 sq.deg) are made available. The multi-band catalogue, including homogenized photometry and photometric redshifts, covers the combined DR1, DR2 and DR3 footprint of 440 survey tiles (447 sq.deg). Limiting magnitudes are typically 24.3, 25.1, 24.9, 23.8 (5 sigma in a 2 arcsec aperture) in ugri, respectively, and the typical r-band PSF size is less than 0.7 arcsec. The photometric homogenization scheme ensures accurate colors and an absolute calibration stable to ~2% for gri and ~3% in u. Separately released are a weak lensing shear catalogue and photometric redshifts based on two different machine-learning techniques.
We have entered a new era where integral-field spectroscopic surveys of galaxies are sufficiently large to adequately sample large-scale structure over a cosmologically significant volume. This was the primary design goal of the SAMI Galaxy Survey. Here, in Data Release 3 (DR3), we release data for the full sample of 3068 unique galaxies observed. This includes the SAMI cluster sample of 888 unique galaxies for the first time. For each galaxy, there are two primary spectral cubes covering the blue (370-570nm) and red (630-740nm) optical wavelength ranges at spectral resolving power of R=1808 and 4304 respectively. For each primary cube, we also provide three spatially binned spectral cubes and a set of standardized aperture spectra. For each galaxy, we include complete 2D maps from parameterized fitting to the emission-line and absorption-line spectral data. These maps provide information on the gas ionization and kinematics, stellar kinematics and populations, and more. All data are available online through Australian Astronomical Optics (AAO) Data Central.
Previous studies have found that the elemental abundances of a star correlate directly with its age and metallicity. Using this knowledge, we derive ages for a sample of 250,000 stars taken from GALAH DR3 using only their overall metallicity and chemical abundances. Stellar ages are estimated via the machine learning algorithm $XGBoost$, using main sequence turnoff stars with precise ages as our input training set. We find that the stellar ages for the bulk of the GALAH DR3 sample are accurate to 1-2 Gyr using this method. With these ages, we replicate many recent results on the age-kinematic trends of the nearby disk, including the age-velocity dispersion relationship of the solar neighborhood and the larger global velocity dispersion relations of the disk found using $Gaia$ and GALAH. The fact that chemical abundances alone can be used to determine a reliable age for a star have profound implications for the future study of the Galaxy as well as upcoming spectroscopic surveys. These results show that the chemical abundance variation at a given birth radius is quite small, and imply that strong chemical tagging of stars directly to birth clusters may prove difficult with our current elemental abundance precision. Our results highlight the need of spectroscopic surveys to deliver precision abundances for as many nucleosynthetic production sites as possible in order to estimate reliable ages for stars directly from their chemical abundances. Applying the methods outlined in this paper opens a new door into studies of the kinematic structure and evolution of the disk, as ages may potentially be estimated for a large fraction of stars in existing spectroscopic surveys. This would yield a sample of millions of stars with reliable age determinations, and allow precise constraints to be put on various kinematic processes in the disk, such as the efficiency and timescales of radial migration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا