Do you want to publish a course? Click here

The GALAH Survey: Second Data Release

86   0   0.0 ( 0 )
 Added by Sven Buder
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Galactic Archaeology with HERMES (GALAH) survey is a large-scale stellar spectroscopic survey of the Milky Way and designed to deliver chemical information complementary to a large number of stars covered by the $Gaia$ mission. We present the GALAH second public data release (GALAH DR2) containing 342,682 stars. For these stars, the GALAH collaboration provides stellar parameters and abundances for up to 23 elements to the community. Here we present the target selection, observation, data reduction and detailed explanation of how the spectra were analysed to estimate stellar parameters and element abundances. For the stellar analysis, we have used a multi-step approach. We use the physics-driven spectrum synthesis of Spectroscopy Made Easy (SME) to derive stellar labels ($T_mathrm{eff}$, $log g$, $mathrm{[Fe/H]}$, $mathrm{[X/Fe]}$, $v_mathrm{mic}$, $v sin i$, $A_{K_S}$) for a representative training set of stars. This information is then propagated to the whole survey with the data-driven method of $The~Cannon$. Special care has been exercised in the spectral synthesis to only consider spectral lines that have reliable atomic input data and are little affected by blending lines. Departures from local thermodynamic equilibrium (LTE) are considered for several key elements, including Li, O, Na, Mg, Al, Si, and Fe, using 1D MARCS stellar atmosphere models. Validation tests including repeat observations, Gaia benchmark stars, open and globular clusters, and K2 asteroseismic targets lend confidence in our methods and results. Combining the GALAH DR2 catalogue with the kinematic information from $Gaia$ will enable a wide range of Galactic Archaeology studies, with unprecedented detail, dimensionality, and scope.



rate research

Read More

The ensemble of chemical element abundance measurements for stars, along with precision distances and orbit properties, provides high-dimensional data to study the evolution of the Milky Way. With this third data release of the Galactic Archaeology with HERMES (GALAH) survey, we publish 678 423 spectra for 588 571 mostly nearby stars (81.2% of stars are within <2 kpc), observed with the HERMES spectrograph at the Anglo-Australian Telescope. This release (hereafter GALAH+ DR3) includes all observations from GALAH Phase 1 (bright, main, and faint survey, 70%), K2-HERMES (17%), TESS-HERMES (5%), and a subset of ancillary observations (8%) including the bulge and >75 stellar clusters. We derive stellar parameters $T_text{eff}$, $log g$, [Fe/H], $v_text{mic}$, $v_text{broad}$ & $v_text{rad}$ using our modified version of the spectrum synthesis code Spectroscopy Made Easy (SME) and 1D MARCS model atmospheres. We break spectroscopic degeneracies in our spectrum analysis with astrometry from $Gaia$ DR2 and photometry from 2MASS. We report abundance ratios [X/Fe] for 30 different elements (11 of which are based on non-LTE computations) covering five nucleosynthetic pathways. We describe validations for accuracy and precision, flagging of peculiar stars/measurements and recommendations for using our results. Our catalogue comprises 65% dwarfs, 34% giants, and 1% other/unclassified stars. Based on unflagged chemical composition and age, we find 62% young low-$alpha$, 9% young high-$alpha$, 27% old high-$alpha$, and 2% stars with $mathrm{[Fe/H]} leq -1$. Based on kinematics, 4% are halo stars. Several Value-Added-Catalogues, including stellar ages and dynamics, updated after $Gaia$ eDR3, accompany this release and allow chrono-chemodynamic analyses, as we showcase.
We present the second data release (DR2) of the SkyMapper Southern Survey, a hemispheric survey carried out with the SkyMapper Telescope at Siding Spring Observatory in Australia, using six optical filters: $u,v,g,r,i,z$. DR2 is the first release to go beyond the $sim$18mag (10${sigma}$) limit of the Shallow Survey released in DR1, and includes portions of the sky at full survey depth that reach >21mag in $g$ and $r$ filters. The DR2 photometry has a precision as measured by internal reproducibility of 1% in $u$ and $v$, and 0.7% in $griz$. More than 21 000 deg$^2$ have data in some filters (at either Shallow or Main Survey depth) and over 7 000 deg$^2$ have deep Main Survey coverage in all six filters. Finally, about 18 000 deg$^2$ have Main Survey data in $i$ and $z$ filters, albeit not yet at full depth. The release contains over 120 000 images, as well as catalogues with over 500 million unique astrophysical objects and nearly 5 billion individual detections. It also contains cross-matches with a range of external catalogues such as Gaia DR2, Pan-STARRS1 DR1, GALEX GUVcat, 2MASS, and AllWISE, as well as spectroscopic surveys such as 2MRS, GALAH, 6dFGS, and 2dFLenS.
We present and make publicly available the second data release (DR2) of the Keck Observatory Database of Ionized Absorption toward Quasars (KODIAQ) survey. KODIAQ DR2 consists of a fully-reduced sample of 300 quasars at 0.07 < z_em < 5.29 observed with HIRES at high resolution (36,000 <= R <= 103,000). DR2 contains 831 spectra available in continuum normalized form, representing a sum total exposure time of ~4.9 megaseconds on source. These co-added spectra arise from a total of 1577 individual exposures of quasars taken from the Keck Observatory Archive (KOA) in raw form and uniformly processed. DR2 extends DR1 by adding 130 new quasars to the sample, including additional observations of QSOs in DR1. All new data in DR2 were obtained with the single-chip Tektronix TK2048 CCD configuration of HIRES in operation between 1995 and 2004. DR2 is publicly available to the community, housed as a higher level science product at the KOA and in the igmspec database (v03).
Due to its proximity, the Orion star forming region is often used as a proxy to study processes related to star formation and to observe young stars in the environment they were born in. With the release of Gaia DR2, the distance measurements to the Orion complex are now good enough that the three dimensional structure of the complex can be explored. Here we test the hypothesis that, due to non-trivial structure and dynamics, and age spread in the Orion complex, the chemical enrichment of youngest stars by early core-collapse supernovae can be observed. We obtained spectra of 794 stars of the Orion complex with the HERMES spectrograph at the Anglo Australian telescope as a part of the GALAH and GALAH-related surveys. We use the spectra of $sim300$ stars to derive precise atmospheric parameters and chemical abundances of 25 elements for 15 stellar clusters in the Orion complex. We demonstrate that the Orion complex is chemically homogeneous and that there was no self-pollution of young clusters by core-collapse supernovae from older clusters; with a precision of 0.02 dex in relative alpha-elements abundance and 0.06 dex in oxygen abundance we would have been able to detect pollution from a single supernova, given a fortunate location of the SN and favourable conditions for ISM mixing. We estimate that the supernova rate in the Orion complex was very low, possibly producing no supernova by the time the youngest stars of the observed population formed (from around 21 to 8 Myr ago).
We present a description of the Australian Dark Energy Survey (OzDES) and summarise the results from its six years of operations. Using the 2dF fibre positioner and AAOmega spectrograph on the 3.9-metre Anglo-Australian Telescope, OzDES has monitored 771 AGN, classified hundreds of supernovae, and obtained redshifts for thousands of galaxies that hosted a transient within the 10 deep fields of the Dark Energy Survey. We also present the second OzDES data release, containing the redshifts of almost 30,000 sources, some as faint as $r_{mathrm AB}=24$ mag, and 375,000 individual spectra. These data, in combination with the time-series photometry from the Dark Energy Survey, will be used to measure the expansion history of the Universe out to $zsim1.2$ and the masses of hundreds of black holes out to $zsim4$. OzDES is a template for future surveys that combine simultaneous monitoring of targets with wide-field imaging cameras and wide-field multi-object spectrographs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا