Do you want to publish a course? Click here

A Survey on Contact Tracing: the Latest Advancements and Challenges

84   0   0.0 ( 0 )
 Added by Ting Jiang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Infectious diseases are caused by pathogenic microorganisms, such as bacteria, viruses, parasites or fungi, which can be spread, directly or indirectly, from one person to another. Infectious diseases pose a serious threat to human health, especially COVID-19 that has became a serious worldwide health concern since the end of 2019. Contact tracing is the process of identifying, assessing, and managing people who have been exposed to a disease to prevent its onward transmission. Contact tracing can help us better understand the transmission link of the virus, whereby better interrupting its transmission. Given the worldwide pandemic of COVID-19, contact tracing has become one of the most critical measures to effectively curb the spread of the virus. This paper presents a comprehensive survey on contact tracing, with a detailed coverage of the recent advancements the models, digital technologies, protocols and issues involved in contact tracing. The current challenges as well as future directions of contact tracing technologies are also presented.



rate research

Read More

The coronavirus disease 2019 (COVID-19) pandemic has caused an unprecedented health crisis for the global. Digital contact tracing, as a transmission intervention measure, has shown its effectiveness on pandemic control. Despite intensive research on digital contact tracing, existing solutions can hardly meet users requirements on privacy and convenience. In this paper, we propose BU-Trace, a novel permissionless mobile system for privacy-preserving intelligent contact tracing based on QR code and NFC technologies. First, a user study is conducted to investigate and quantify the user acceptance of a mobile contact tracing system. Second, a decentralized system is proposed to enable contact tracing while protecting user privacy. Third, an intelligent behavior detection algorithm is designed to ease the use of our system. We implement BU-Trace and conduct extensive experiments in several real-world scenarios. The experimental results show that BU-Trace achieves a privacy-preserving and intelligent mobile system for contact tracing without requesting location or other privacy-related permissions.
Contact tracing has been extensively studied from different perspectives in recent years. However, there is no clear indication of why this intervention has proven effective in some epidemics (SARS) and mostly ineffective in some others (COVID-19). Here, we perform an exhaustive evaluation of random testing and contact tracing on novel superspreading random networks to try to identify which epidemics are more containable with such measures. We also explore the suitability of positive rates as a proxy of the actual infection statuses of the population. Moreover, we propose novel ideal strategies to explore the potential limits of both testing and tracing strategies. Our study counsels caution, both at assuming epidemic containment and at inferring the actual epidemic progress, with current testing or tracing strategies. However, it also brings a ray of light for the future, with the promise of the potential of novel testing strategies that can achieve great effectiveness.
Since the onset of the COVID-19s global spread we have been following the debate around contact tracing apps -- the tech-enabled response to the pandemic. As corporations, academics, governments, and civil society discuss the right way to implement these apps, we noticed recurring implicit assumptions. The proposed solutions are designed for a world where Internet access and smartphone ownership are a given, people are willing and able to install these apps, and those who receive notifications about potential exposure to the virus have access to testing and can isolate safely. In this work we challenge these assumptions. We not only show that there are not enough smartphones worldwide to reach required adoption thresholds but also highlight a broad lack of internet access, which affects certain groups more: the elderly, those with lower incomes, and those with limited ability to socially distance. Unfortunately, these are also the groups that are at the highest risks from COVID-19. We also report that the contact tracing apps that are already deployed on an opt-in basis show disappointing adoption levels. We warn about the potential consequences of over-extending the existing state and corporate surveillance powers. Finally, we describe a multitude of scenarios where contact tracing apps will not help regardless of access or policy. In this work we call for a comprehensive and equitable policy response that prioritizes the needs of the most vulnerable, protects human rights, and considers long term impact instead of focusing on technology-first fixes.
The spread of an infectious disease through a population can be modeled using a network or a graph. In digital advertising, internet device graphs are graph data sets that organize identifiers produced by mobile phones, PCs, TVs, and tablets as they access media on the internet. Characterized by immense scale, they have become ubiquitous as they enable targeted advertising, content customization and tracking. This paper posits that internet device graphs, in particular those based on IP colocation, can provide significant utility in predicting and modeling the spread of infectious disease. Starting the week of March 16th, 2020, in the United States, many individuals began to `shelter-in-place as schools and workplaces across the nation closed because of the COVID-19 pandemic. This paper quantifies the effect of the shelter-in-place orders on a large scale internet device graph with more than a billion nodes by studying the graph before and after orders went into effect. The effects are clearly visible. The structure of the graph suggests behavior least conducive to transmission of infection occurred in the US between April 12th and 19th, 2020. This paper also discusses the utility of device graphs for i) contact tracing, ii) prediction of `hot spots, iii) simulation of infectious disease spread, and iv) delivery of advertisement-based warnings to potentially exposed individuals. The paper also posits an overarching question: can systems and datasets amassed by entities in the digital ad ecosystem aid in the fight against COVID-19?
The global outbreak of COVID-19 has led to focus on efforts to manage and mitigate the continued spread of the disease. One of these efforts include the use of contact tracing to identify people who are at-risk of developing the disease through exposure to an infected person. Historically, contact tracing has been primarily manual but given the exponential spread of the virus that causes COVID-19, there has been significant interest in the development and use of digital contact tracing solutions to supplement the work of human contact tracers. The collection and use of sensitive personal details by these applications has led to a number of concerns by the stakeholder groups with a vested interest in these solutions. We explore digital contact tracing solutions in detail and propose the use of a transparent reporting mechanism, FactSheets, to provide transparency of and support trust in these applications. We also provide an example FactSheet template with questions that are specific to the contact tracing application domain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا