Do you want to publish a course? Click here

Semi-Supervised Cleansing of Web Argument Corpora

165   0   0.0 ( 0 )
 Added by Henning Wachsmuth
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Debate portals and similar web platforms constitute one of the main text sources in computational argumentation research and its applications. While the corpora built upon these sources are rich of argumentatively relevant content and structure, they also include text that is irrelevant, or even detrimental, to their purpose. In this paper, we present a precision-oriented approach to detecting such irrelevant text in a semi-supervised way. Given a few seed examples, the approach automatically learns basic lexical patterns of relevance and irrelevance and then incrementally bootstraps new patterns from sentences matching the patterns. In the existing args.me corpus with 400k argumentative texts, our approach detects almost 87k irrelevant sentences, at a precision of 0.97 according to manual evaluation. With low effort, the approach can be adapted to other web argument corpora, providing a generic way to improve corpus quality.



rate research

Read More

275 - Zeyi Wen , Zeyu Huang , Rui Zhang 2019
Entity extraction is an important task in text mining and natural language processing. A popular method for entity extraction is by comparing substrings from free text against a dictionary of entities. In this paper, we present several techniques as a post-processing step for improving the effectiveness of the existing entity extraction technique. These techniques utilise models trained with the web-scale corpora which makes our techniques robust and versatile. Experiments show that our techniques bring a notable improvement on efficiency and effectiveness.
The web contains countless semi-structured websites, which can be a rich source of information for populating knowledge bases. Existing methods for extracting relations from the DOM trees of semi-structured webpages can achieve high precision and recall only when manual annotations for each website are available. Although there have been efforts to learn extractors from automatically-generated labels, these methods are not sufficiently robust to succeed in settings with complex schemas and information-rich websites. In this paper we present a new method for automatic extraction from semi-structured websites based on distant supervision. We automatically generate training labels by aligning an existing knowledge base with a web page and leveraging the unique structural characteristics of semi-structured websites. We then train a classifier based on the potentially noisy and incomplete labels to predict new relation instances. Our method can compete with annotation-based techniques in the literature in terms of extraction quality. A large-scale experiment on over 400,000 pages from dozens of multi-lingual long-tail websites harvested 1.25 million facts at a precision of 90%.
The abundant semi-structured data on the Web, such as HTML-based tables and lists, provide commercial search engines a rich information source for question answering (QA). Different from plain text passages in Web documents, Web tables and lists have inherent structures, which carry semantic correlations among various elements in tables and lists. Many existing studies treat tables and lists as flat documents with pieces of text and do not make good use of semantic information hidden in structures. In this paper, we propose a novel graph representation of Web tables and lists based on a systematic categorization of the components in semi-structured data as well as their relations. We also develop pre-training and reasoning techniques on the graph model for the QA task. Extensive experiments on several real datasets collected from a commercial engine verify the effectiveness of our approach. Our method improves F1 score by 3.90 points over the state-of-the-art baselines.
Recent success of deep learning models for the task of extractive Question Answering (QA) is hinged on the availability of large annotated corpora. However, large domain specific annotated corpora are limited and expensive to construct. In this work, we envision a system where the end user specifies a set of base documents and only a few labelled examples. Our system exploits the document structure to create cloze-style questions from these base documents; pre-trains a powerful neural network on the cloze style questions; and further fine-tunes the model on the labeled examples. We evaluate our proposed system across three diverse datasets from different domains, and find it to be highly effective with very little labeled data. We attain more than 50% F1 score on SQuAD and TriviaQA with less than a thousand labelled examples. We are also releasing a set of 3.2M cloze-style questions for practitioners to use while building QA systems.
Much recent work on Spoken Language Understanding (SLU) falls short in at least one of three ways: models were trained on oracle text input and neglected the Automatics Speech Recognition (ASR) outputs, models were trained to predict only intents without the slot values, or models were trained on a large amount of in-house data. We proposed a clean and general framework to learn semantics directly from speech with semi-supervision from transcribed speech to address these. Our framework is built upon pretrained end-to-end (E2E) ASR and self-supervised language models, such as BERT, and fine-tuned on a limited amount of target SLU corpus. In parallel, we identified two inadequate settings under which SLU models have been tested: noise-robustness and E2E semantics evaluation. We tested the proposed framework under realistic environmental noises and with a new metric, the slots edit F1 score, on two public SLU corpora. Experiments show that our SLU framework with speech as input can perform on par with those with oracle text as input in semantics understanding, while environmental noises are present, and a limited amount of labeled semantics data is available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا