Do you want to publish a course? Click here

CERES: Distantly Supervised Relation Extraction from the Semi-Structured Web

105   0   0.0 ( 0 )
 Added by Colin Lockard
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The web contains countless semi-structured websites, which can be a rich source of information for populating knowledge bases. Existing methods for extracting relations from the DOM trees of semi-structured webpages can achieve high precision and recall only when manual annotations for each website are available. Although there have been efforts to learn extractors from automatically-generated labels, these methods are not sufficiently robust to succeed in settings with complex schemas and information-rich websites. In this paper we present a new method for automatic extraction from semi-structured websites based on distant supervision. We automatically generate training labels by aligning an existing knowledge base with a web page and leveraging the unique structural characteristics of semi-structured websites. We then train a classifier based on the potentially noisy and incomplete labels to predict new relation instances. Our method can compete with annotation-based techniques in the literature in terms of extraction quality. A large-scale experiment on over 400,000 pages from dozens of multi-lingual long-tail websites harvested 1.25 million facts at a precision of 90%.



rate research

Read More

Distant supervision has been a widely used method for neural relation extraction for its convenience of automatically labeling datasets. However, existing works on distantly supervised relation extraction suffer from the low quality of test set, which leads to considerable biased performance evaluation. These biases not only result in unfair evaluations but also mislead the optimization of neural relation extraction. To mitigate this problem, we propose a novel evaluation method named active testing through utilizing both the noisy test set and a few manual annotations. Experiments on a widely used benchmark show that our proposed approach can yield approximately unbiased evaluations for distantly supervised relation extractors.
In this paper, we propose a fully automated system to extend knowledge graphs using external information from web-scale corpora. The designed system leverages a deep learning based technology for relation extraction that can be trained by a distantly supervised approach. In addition to that, the system uses a deep learning approach for knowledge base completion by utilizing the global structure information of the induced KG to further refine the confidence of the newly discovered relations. The designed system does not require any effort for adaptation to new languages and domains as it does not use any hand-labeled data, NLP analytics and inference rules. Our experiments, performed on a popular academic benchmark demonstrate that the suggested system boosts the performance of relation extraction by a wide margin, reporting error reductions of 50%, resulting in relative improvement of up to 100%. Also, a web-scale experiment conducted to extend DBPedia with knowledge from Common Crawl shows that our system is not only scalable but also does not require any adaptation cost, while yielding substantial accuracy gain.
Distant supervision leverages knowledge bases to automatically label instances, thus allowing us to train relation extractor without human annotations. However, the generated training data typically contain massive noise, and may result in poor performances with the vanilla supervised learning. In this paper, we propose to conduct multi-instance learning with a novel Cross-relation Cross-bag Selective Attention (C$^2$SA), which leads to noise-robust training for distant supervised relation extractor. Specifically, we employ the sentence-level selective attention to reduce the effect of noisy or mismatched sentences, while the correlation among relations were captured to improve the quality of attention weights. Moreover, instead of treating all entity-pairs equally, we try to pay more attention to entity-pairs with a higher quality. Similarly, we adopt the selective attention mechanism to achieve this goal. Experiments with two types of relation extractor demonstrate the superiority of the proposed approach over the state-of-the-art, while further ablation studies verify our intuitions and demonstrate the effectiveness of our proposed two techniques.
Label noise and long-tailed distributions are two major challenges in distantly supervised relation extraction. Recent studies have shown great progress on denoising, but pay little attention to the problem of long-tailed relations. In this paper, we introduce constraint graphs to model the dependencies between relation labels. On top of that, we further propose a novel constraint graph-based relation extraction framework(CGRE) to handle the two challenges simultaneously. CGRE employs graph convolution networks (GCNs) to propagate information from data-rich relation nodes to data-poor relation nodes, and thus boosts the representation learning of long-tailed relations. To further improve the noise immunity, a constraint-aware attention module is designed in CGRE to integrate the constraint information. Experimental results on a widely-used benchmark dataset indicate that our approach achieves significant improvements over the previous methods for both denoising and long-tailed relation extraction. Our dataset and codes are available at https://github.com/tmliang/CGRE.
With recent advances in distantly supervised (DS) relation extraction (RE), considerable attention is attracted to leverage multi-instance learning (MIL) to distill high-quality supervision from the noisy DS. Here, we go beyond label noise and identify the key bottleneck of DS-MIL to be its low data utilization: as high-quality supervision being refined by MIL, MIL abandons a large amount of training instances, which leads to a low data utilization and hinders model training from having abundant supervision. In this paper, we propose collaborative adversarial training to improve the data utilization, which coordinates virtual adversarial training (VAT) and adversarial training (AT) at different levels. Specifically, since VAT is label-free, we employ the instance-level VAT to recycle instances abandoned by MIL. Besides, we deploy AT at the bag-level to unleash the full potential of the high-quality supervision got by MIL. Our proposed method brings consistent improvements (~ 5 absolute AUC score) to the previous state of the art, which verifies the importance of the data utilization issue and the effectiveness of our method.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا