Do you want to publish a course? Click here

Experimental observation of hydrodynamic-like behavior in 3D Dirac semimetal ZrTe5

81   0   0.0 ( 0 )
 Added by Chang-Woo Cho
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hydrodynamic fluidity in condensed matter physics has been experimentally demonstrated only in a limited number of compounds due to the stringent conditions that must be met. Herein, we demonstrate phonon hydrodynamic-like properties in three-dimensional topological semimetal ZrTe5 thanks to its ultrahigh-purity and intrinsic structural instability. By measuring the thermal properties in a wide temperature range, two representative experimental evidences of phonon hydrodynamics are seen in an interesting temperature window between the ballistic and diffusive regimes: a faster evolution of the thermal conductivity than in the ballistic regime and the non-monotonic temperature-dependent effective phonon mean-free-path. In addition, magneto-thermal conductivity results indicate us that charged quasiparticles, as well as phonons, may also play an important role in the hydrodynamic flow in the ZrTe5 system.



rate research

Read More

Novel phases of matter with unique properties that emerge from quantum and topological protection present an important thrust of modern research. Of particular interest is to engineer these phases on demand using ultrafast external stimuli, such as photoexcitation, which offers prospects of their integration into future devices compatible with optical communication and information technology. Here, we use MeV Ultrafast Electron Diffraction (UED) to show how a transient three-dimensional (3D) Dirac semimetal state can be induced by a femtosecond laser pulse in a topological insulator ZrTe$_5$. We observe marked changes in Bragg diffraction, which are characteristic of bond distortions in the photoinduced state. Using the atomic positions refined from the UED, we perform density functional theory (DFT) analysis of the electronic band structure. Our results reveal that the equilibrium state of ZrTe$_5$ is a topological insulator with a small band gap of $sim$25 meV, consistent with angle-resolved photoemission (ARPES) experiments. However, the gap is closed in the presence of strong spin-orbit coupling (SOC) in the photoinduced transient state, where massless Dirac fermions emerge in the chiral band structure. The time scale of the relaxation dynamics to the transient Dirac semimetal state is remarkably long, $tau sim$160 ps, which is two orders of magnitude longer than the conventional phonon-driven structural relaxation. The long relaxation is consistent with the vanishing density of states in Dirac spectrum and slow spin-repolarization of the SOC-controlled band structure accompanying the emergence of Dirac fermions.
The chiral magnetic effect is the generation of electric current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions (massless spin $1/2$ particles with a definite projection of spin on momentum) -- a dramatic phenomenon arising from a collective motion of particles and antiparticles in the Dirac sea. The recent discovery of Dirac semimetals with chiral quasi-particles opens a fascinating possibility to study this phenomenon in condensed matter experiments. Here we report on the first observation of chiral magnetic effect through the measurement of magneto-transport in zirconium pentatelluride, ZrTe_5. Our angle-resolved photoemission spectroscopy experiments show that this materials electronic structure is consistent with a 3D Dirac semimetal. We observe a large negative magnetoresistance when magnetic field is parallel with the current. The measured quadratic field dependence of the magnetoconductance is a clear indication of the chiral magnetic effect. The observed phenomenon stems from the effective transmutation of Dirac semimetal into a Weyl semimetal induced by the parallel electric and magnetic fields that represent a topologically nontrivial gauge field background.
Experimental identification of three-dimensional (3D) Dirac semimetals in solid state systems is critical for realizing exotic topological phenomena and quantum transport such as the Weyl phases, high temperature linear quantum magnetoresistance and topological magnetic phases. Using high resolution angle-resolved photoemission spectroscopy, we performed systematic electronic structure studies on well-known compound Cd3As2. For the first time, we observe a highly linear bulk Dirac cone located at the Brillouin zone center projected onto the (001) surface which is consistent with a 3D Dirac semimetal phase in Cd3As2. Remarkably, an unusually high Dirac Fermion velocity up to 10.2 textrm{AA}{cdot}$eV (1.5 times 10^{6} ms^-1) is seen in samples where the mobility far exceeds 40,000 cm^2/V.s suggesting that Cd3As2 can be a promising candidate as a hypercone analog of graphene in many device-applications which can also incorporate topological quantum phenomena in a large gap setting. Our experimental identification of this novel topological 3D Dirac semimetal phase, distinct from a 3D topological insulator phase discovered previously, paves the way for exploring higher dimensional relativistic physics in bulk transport and for realizing novel Fermionic matter such as a Fermi arc nodal metal.
The family of three-dimensional topological insulators opens new avenues to discover novel photophysics and to develop novel types of photodetectors. ZrTe5 has been shown to be a Dirac semimetal possessing unique topological electronic and optical properties. Here we present spatially-resolved photocurrent measurements on devices made of nanoplatelets of ZrTe5, demonstrating the photothermoelectric origin of the photoresponse. Due to the high electrical conductivity and good Seebeck coefficient, we obtain noise-equivalent powers as low as 42 pW/Hz1/2 at room temperature for visible light illumination at zero bias. We also show that these devices suffer from significant ambient reactivity such as the formation of a Te-rich surface region driven by Zr oxidation, as well as severe reactions with the metal contacts. This reactivity results in significant stresses in the devices, leading to unusual geometries that are useful for gaining insight into the photocurrent mechanisms. Our results indicate that both the large photothermoelectric response and reactivity must be considered when designing or interpreting photocurrent measurements in these systems.
High quality hexagon plate-like Na3Bi crystals with large (001) plane surfaces were grown from a molten Na flux. The freshly cleaved crystals were analyzed by low temperature scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES), allowing for the characterization of the three-dimensional (3D) Dirac semimetal (TDS) behavior and the observation of the topological surface states. Landau levels (LL) were observed, and the energy-momentum relations exhibited a linear dispersion relationship, characteristic of the 3D TDS nature of Na3Bi. In transport measurements on Na3Bi crystals the linear magnetoresistance and Shubnikov-de Haas (SdH) quantum oscillations are observed for the first time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا