Do you want to publish a course? Click here

Observation of the chiral magnetic effect in ZrTe5

166   0   0.0 ( 0 )
 Added by Dmitri Kharzeev
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The chiral magnetic effect is the generation of electric current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions (massless spin $1/2$ particles with a definite projection of spin on momentum) -- a dramatic phenomenon arising from a collective motion of particles and antiparticles in the Dirac sea. The recent discovery of Dirac semimetals with chiral quasi-particles opens a fascinating possibility to study this phenomenon in condensed matter experiments. Here we report on the first observation of chiral magnetic effect through the measurement of magneto-transport in zirconium pentatelluride, ZrTe_5. Our angle-resolved photoemission spectroscopy experiments show that this materials electronic structure is consistent with a 3D Dirac semimetal. We observe a large negative magnetoresistance when magnetic field is parallel with the current. The measured quadratic field dependence of the magnetoconductance is a clear indication of the chiral magnetic effect. The observed phenomenon stems from the effective transmutation of Dirac semimetal into a Weyl semimetal induced by the parallel electric and magnetic fields that represent a topologically nontrivial gauge field background.



rate research

Read More

178 - Jinfeng Liao 2016
The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields $|vec{bf B}|sim m_pi^2$ are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. In this contribution we give a brief overview on the status of such efforts.
The quark-gluon matter produced in relativistic heavy-ion collisions may contain local domains in which P and CP symmetries are not preserved. When coupled with an external magnetic field, such P- and CP-odd domains will generate electric currents along the magnetic field --- a phenomenon called the chiral magnetic effect (CME). Recently, the STAR Collaboration at RHIC and the ALICE Collaboration at the LHC released data of charge-dependent azimuthal-angle correlators with features consistent with the CME expectation. However, the experimental observable is contaminated with significant background contributions from elliptic-flow-driven effects, which makes the interpretation of the data ambiguous. In this Letter, we show that the collisions of isobaric nuclei, $^{96}_{44}$Ru + $^{96}_{44}$Ru and $^{96}_{40}$Zr + $^{96}_{40}$Zr, provide an ideal tool to disentangle the CME signal from the background effects. Our simulation demonstrates that the two collision types at $sqrt{s_{rm NN}}=200$ GeV have more than $10%$ difference in the CME signal and less than $2%$ difference in the elliptic-flow-driven backgrounds for the centrality range of $20-60%$.
The quantum Hall effect (QHE) is traditionally considered a purely two-dimensional (2D) phenomenon. Recently, a three-dimensional (3D) version of the QHE has been reported in the Dirac semimetal ZrTe5. It was proposed to arise from a magnetic-field-driven Fermi surface instability, transforming the original 3D electron system into a stack of 2D sheets. Here, we report thermodynamic, thermoelectric and charge transport measurements on ZrTe5 in the quantum Hall regime. The measured thermodynamic properties: magnetization and ultrasound propagation, show no signatures of a Fermi surface instability, consistent with in-field single crystal X-ray diffraction. Instead, a direct comparison of the experimental data with linear response calculations based on an effective 3D Dirac Hamiltonian suggests that the quasi-quantization of the observed Hall response is an intrinsic property of the 3D electronic structure. Our findings render the Hall effect in ZrTe5 a truly 3D counterpart of the QHE in 2D systems.
The non-central Cu + Au collisions can create strong out-of-plane magnetic fields and in-plane electric fields. By using the HIJING model, we study the general properties of the electromagnetic fields in Cu + Au collisions at 200 GeV and their impacts on the charge-dependent two-particle correlator $gamma_{q_1q_2}=<cos(phi_1+phi_2-2psi_{RP})>$ (see main text for definition) which was used for the detection of the chiral magnetic effect (CME). Compared with Au + Au collisions, we find that the in-plane electric fields in Cu + Au collisions can strongly suppress the two-particle correlator or even reverse its sign if the lifetime of the electric fields is long. Combining with the expectation that if $gamma_{q_1q_2}$ is induced by elliptic-flow driven effects we would not see such strong suppression or reversion, our results suggest to use Cu + Au collisions to test CME and understand the mechanisms that underlie $gamma_{q_1q_2}$.
594 - Sergei A. Voloshin 2010
A quark interaction with topologically nontrivial gluonic fields, instantons and sphalerons, violates P~ and CP~ symmetry. In the strong magnetic field of a noncentral nuclear collision such interactions lead to the charge separation along the magnetic field, the so-called chiral magnetic effect (CME). Recent results from the STAR collaboration on charge dependent correlations are consistent with theoretical expectations for CME but may have contributions from other effects, which prevents definitive interpretation of the data. Here I propose to use central body-body $U+U$ collisions to disentangle correlations due to CME from possible background correlations due to elliptic flow. Further more quantitative studies can be performed with collision of isobaric beams.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا