Do you want to publish a course? Click here

A Low-Power Time-to-Digital Converter for the CMS Endcap Timing Layer (ETL) Upgrade

76   0   0.0 ( 0 )
 Added by Datao Gong
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present the design and test results of a Time-to-Digital-Converter (TDC). The TDC will be a part of the readout ASIC, called ETROC, to read out Low-Gain Avalanche Detectors (LGADs) for the CMS Endcap Timing Layer (ETL) of High-Luminosity LHC upgrade. One of the challenges of the ETROC design is that the TDC is required to consume less than 200 W for each pixel at the nominal hit occupancy of 1%. To meet the low-power requirement, we use a single delay line for both the Time of Arrival (TOA) and the Time over Threshold (TOT) measurements without delay control. A double-strobe self-calibration scheme is used to compensate for process variation, temperature, and power supply voltage. The TDC is fabricated in a 65 nm CMOS technology. The overall performances of the TDC have been evaluated. The TOA has a bin size of 17.8 ps within its effective dynamic range of 11.6 ns. The effective measurement precision of the TOA is 5.6 ps and 9.9 ps with and without the nonlinearity correction, respectively. The TDC block consumes 97 W at the hit occupancy of 1%. Over a temperature range from 23 C to 78 C and a power supply voltage range from 1.05 V to 1.35 V (the nominal value of 1.20 V), the self-calibrated bin size of the TOA varies within 0.4%. The measured TDC performances meet the requirements except that more tests will be performed in the future to verify that the TDC complies with the radiation-tolerance specifications.



rate research

Read More

253 - Sebastian N. White 2014
The PhaseII Upgrades of CMS are being planned for the High Luminosity LHC (HL-LHC) era when the mean number of interactions per beam crossing (in-time pileup) is expected to reach ~140-200. The potential backgrounds arising from mis-associated jets and photon showers, for example, during event reconstruction could be reduced if physics objects are tagged with an event time. This tag is fully complementary to the event vertex which is already commonly used to reduce mis-reconstruction. Since the tracking vertex resolution is typically ~10^{-3} (50 micron/4.8cm) of the rms vertex distribution, whereas only ~10^{-1} (i.e. 20 vs.170 picoseconds (psec)) is demonstrated for timing, it is often assumed that only photon (i.e. EM calorimeter or shower-max) timing is of interest. We show that the optimal solution will likely be a single timing layer which measures both charged particle and photon time (a pre-shower layer).
108 - H. Sun , D. Gong , C. Edwards 2021
We present the implementation and verification of an in-pixel automatic threshold calibration circuit for the CMS Endcap Timing Layer (ETL) in the High-Luminosity LHC upgrade. The discriminator threshold of the ETL readout chip (ETROC) needs to be calibrated regularly to mitigate the circuit baseline change. Traditional methods need a lot of communication through a slow control system hence are time-consuming. This paper describes an in-pixel automatic scheme with improvements in operating time and usability. In this scheme, a sample-accumulation circuit is used to measure the average discriminator output. A binary successive approximation and linear combination scan are applied to find the equivalent baseline. The actual calibration procedure has been first implemented in FPGA firmware and tested with the ETROC front-end prototype chip (ETROC0). The calibration circuit has been implemented with Triple Modular Redundancy (TMR) and verified with Single Event Effects (SEEs) simulation. A complete calibration process lasts 35 ms with a 40 MHz clock. In the worst case, the dynamic and static power consumption are estimated to be 300 uW and 10.4 uW, respectively. The circuit design, implemented in a 65 CMOS technology, will be integrated into ETROC2, the next iteration of the ETROC with a 16x16 pixel matrix.
236 - H. Sun , D. Gong , W. Zhang 2021
We present the characterization of a readout Application-Specific Integrated Circuit (ASIC) for the CMS Endcap Timing Layer (ETL) of the High-Luminosity LHC upgrade with charge injection. The ASIC, named ETROC and developed in a 65 nm CMOS technology, reads out a 16x16 pixel matrix of the Low-Gain Avalanche Detector (LGAD). The jitter contribution from ETROC is required to be below 40 ps to achieve the 50 ps overall time resolution per hit. The analog readout circuits in ETROC consist of the preamplifier and the discriminator. The preamplifier handles the LGAD charge signal with the most probable value of around 15 fC. The discriminator generates the digital pulse, which provides the Time-Of-Arrival (TOA, leading edge) and Time-Over-Threshold (TOT, pulse width) information. The prototype of ETROC (ETROC0) that implements a single channel of analog readout circuits has been evaluated with charge injection. The jitter of the analog readout circuits, measured from the discriminators leading edge, is better than 16 ps for a charge larger than 15 fC with the sensor capacitance. The time walk resulting from different pulse heights can be corrected using the TOT measurement. The time resolution distribution has a standard deviation of 29 ps after the time-walk correction from the charge injection. At room temperature, the preamplifiers power consumption is measured to be 0.74 mW and 1.53 mW per pixel in the low- and high-power mode, respectively. The measured power consumption of the discriminator is 0.84 mW per pixel. With the ASIC alone or the LGAD sensor, The characterization performances fulfill the ETLs challenging requirements.
Time to Digital Converters (TDCs) are very common devices in particles physics experiments. A lot of off-the-shelf TDCs can be employed but the necessity of a custom DAta acQuisition (DAQ) system makes the TDCs implemented on the Field-Programmable Gate Arrays (FPGAs) desirable. Most of the architectures developed so far are based on the tapped delay lines with precision down to 10 ps, obtained with high FPGA resources usage and non-linearity issues to be managed. Often such precision is not necessary; in this case TDC architectures with low resources occupancy are preferable allowing the implementation of data processing systems and of other utilities on the same device. In order to reconstruct gamma-gamma physics events tagged with High Energy Tagger (HET) in the KLOE-2 (K LOng Experiment 2), we need to measure the Time Of Flight (TOF) of the electrons and positrons from the KLOE-2 Interaction Point (IP) to our tagging stations (11 m apart). The required resolution must be better than the bunch spacing (2.7 ns). We have developed and implemented on a Xilinx Virtex-5 FPGA a 32 channel TDC with a precision of 255 ps and low non-linearity effects along with an embedded data acquisition systems and the interface to the online FARM of KLOE-2.
We present some aspects of photon counting to study scintillators at low temperatures. A time-to-digital converter (TDC) had been configured to acquire several-minute-long streams of data, simplifying the multiple photon counting coincidence technique. Results in terms of light yield and time structure of a ZnWO4 scintillator are comparable to those obtained with a fast digitizer. Streaming data also provides flexibility in analyzing the data, in terms of coincidence window between the channels, and acquisition window of individual channels. We discuss the effect of changing these parameters, and use them to confirm low-energy features in the spectra of the number of detected photons, such as the 60 keV line from 241Am in the ZnWO4 sample. We lastly use the TDC to study the transmission of the optical cryostat employed in these studies at various temperatures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا