Do you want to publish a course? Click here

Large Rashba unidirectional magnetoresistance in the Fe/Ge(111) interface states

86   0   0.0 ( 0 )
 Added by Matthieu Jamet
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The structure inversion asymmetry at surfaces and interfaces give rise to the Rashba spin-orbit interaction (SOI), that breaks the spin degeneracy of surface or interface states. Hence, when an electric current runs through a surface or interface, this Rashba effect generates an effective magnetic field acting on the electron spin. This provides an additional tool to manipulate the spin state in materials such as Si and Ge that, in their bulk form, possess inversion symmetry (or lack structural inersion asymmetry). The existence of Rashba states could be demonstrated by photoemission spectroscopy at the interface between different metals and Ge(111) and by spin-charge conversion experiments at the Fe/Ge(111) interface even though made of two light elements. In this work, we identify the fingerprint of the Rashba states at the Fe/Ge(111) interface by magnetotransport measurements in the form of a large unidirectional magnetoresistance of up to 0.1 %. From its temperature dependence, we find that the Rashba energy splitting is larger than in pure Ge(111) subsurface states.



rate research

Read More

Relating magnetotransport properties to specific spin textures at surfaces or interfaces is an intense field of research nowadays. Here, we investigate the variation of the electrical resistance of Ge(111) grown epitaxially on semi-insulating Si(111) under the application of an external magnetic field. We find a magnetoresistance term which is linear in current density j and magnetic field B, hence odd in j and B, corresponding to a unidirectional magnetoresistance. At 15 K, for I = 10 $mu$A (or j = 0.33 A/m) and B = 1 T, it represents 0.5 % of the zero field resistance, a much higher value compared to previous reports on unidirectional magnetoresistance. We ascribe the origin of this magnetoresistance to the interplay between the externally applied magnetic field and the current-induced pseudo-magnetic field in the spin-splitted subsurface states of Ge(111). This unidirectional magnetoresistance is independent of the current direction with respect to the Ge crystal axes. It progressively vanishes, either using a negative gate voltage due to carrier activation into the bulk (without spin-splitted bands), or by increasing the temperature due to the Rashba energy splitting of the subsurface states lower than $sim$58 k$_B$. The highly developed technologies on semiconductor platforms would allow the rapid optimization of devices based on this phenomenon.
We report direct experimental evidence showing induced magnetic moments on Ge at the interface in an Fe/Ge system. Details of the x-ray magnetic circular dichroism and resonant magnetic scattering at the Ge L edge demonstrate the presence of spin-polarized {it s} states at the Fermi level, as well as {it d} character moments at higher energy, which are both oriented antiparallel to the moment of the Fe layer. Use of the sum rules enables extraction of the L/S ratio, which is zero for the {it s} part and $sim0.5$ for the {it d} component. These results are consistent with layer-resolved electronic structure calculations, which estimate the {it s} and {it d} components of the Ge moment are anti-parallel to the Fe {it 3d} moment and have a magnitude of $sim0.01 mu_B$.
We report current-direction dependent or unidirectional magnetoresistance (UMR) in magnetic/nonmagnetic topological insulator (TI) heterostructures, Cr$_x$(Bi$_{1-y}$Sb$_y$)$_{2-x}$Te$_3$/(Bi$_{1-y}$Sb$_y$)$_2$Te$_3$, that is several orders of magnitude larger than in other reported systems. From the magnetic field and temperature dependence, the UMR is identified to originate from the asymmetric scattering of electrons by magnons. In particular, the large magnitude of UMR is an outcome of spin-momentum locking and a small Fermi wavenumber at the surface of TI. In fact, the UMR is maximized around the Dirac point with the minimal Fermi wavenumber.
87 - Yang Lv , James Kally , Tao Liu 2018
Thanks to its unique symmetry, the unidirectional spin Hall and Rashba-Edelstein magnetoresistance (USRMR) is of great fundamental and practical interest, particularly in the context of reading magnetization states in two-terminal spin-orbit torque switching memory and logic devices. Recent studies show that topological insulators could improve USRMR amplitude. However, the topological insulator device configurations studied so far in this context, namely ferromagnetic metal/topological insulator bilayers and magnetically doped topological insulators, suffer from current shunting by the metallic layer and low Curie temperature, respectively. Here, we report large USRMR in a new material category - magnetic insulator/topological insulator bi-layered heterostructures. Such structures exhibit USRMR that is about an order of magnitude larger than the highest values reported so far in all-metal Ta/Co bilayers. We also demonstrate current-induced magnetization switching aided by an Oersted field, and electrical read out by the USRMR, as a prototype memory device.
Recent experimental realizations of the topological semimetal states in several monolayer systems are very attractive because of their exotic quantum phenomena and technological applications. Based on first-principles density-functional theory calculations including spin-orbit coupling, we here explore the drastically different two-dimensional (2D) topological semimetal states in three monolayers Cu$_2$Ge, Fe$_2$Ge, and Fe$_2$Sn, which are isostructural with a combination of the honeycomb Cu or Fe lattice and the triangular Ge or Sn lattice. We find that (i) the nonmagnetic (NM) Cu$_{2}$Ge monolayer having a planar geometry exhibits the massive Dirac nodal lines, (ii) the ferromagentic (FM) Fe$_2$Ge monolayer having a buckled geometry exhibits the massive Weyl points, and (iii) the FM Fe$_2$Sn monolayer having a planar geometry and an out-of-plane magnetic easy axis exhibits the massless Weyl nodal lines. It is therefore revealed that mirror symmetry cannot protect the four-fold degenerate Dirac nodal lines in the NM Cu$_{2}$Ge monolayer, but preserves the doubly degenerate Weyl nodal lines in the FM Fe$_{2}$Sn monolayer. Our findings demonstrate that the interplay of crystal symmetry, magnetic easy axis, and band topology is of importance for tailoring various 2D topological states in Cu$_2$Ge, Fe$_2$Ge, and Fe$_2$Sn monlayers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا