Do you want to publish a course? Click here

Large unidirectional spin Hall and Rashba-Edelstein magnetoresistance in topological insulator/magnetic insulator heterostructures

88   0   0.0 ( 0 )
 Added by Yang Lv
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thanks to its unique symmetry, the unidirectional spin Hall and Rashba-Edelstein magnetoresistance (USRMR) is of great fundamental and practical interest, particularly in the context of reading magnetization states in two-terminal spin-orbit torque switching memory and logic devices. Recent studies show that topological insulators could improve USRMR amplitude. However, the topological insulator device configurations studied so far in this context, namely ferromagnetic metal/topological insulator bilayers and magnetically doped topological insulators, suffer from current shunting by the metallic layer and low Curie temperature, respectively. Here, we report large USRMR in a new material category - magnetic insulator/topological insulator bi-layered heterostructures. Such structures exhibit USRMR that is about an order of magnitude larger than the highest values reported so far in all-metal Ta/Co bilayers. We also demonstrate current-induced magnetization switching aided by an Oersted field, and electrical read out by the USRMR, as a prototype memory device.



rate research

Read More

We report current-direction dependent or unidirectional magnetoresistance (UMR) in magnetic/nonmagnetic topological insulator (TI) heterostructures, Cr$_x$(Bi$_{1-y}$Sb$_y$)$_{2-x}$Te$_3$/(Bi$_{1-y}$Sb$_y$)$_2$Te$_3$, that is several orders of magnitude larger than in other reported systems. From the magnetic field and temperature dependence, the UMR is identified to originate from the asymmetric scattering of electrons by magnons. In particular, the large magnitude of UMR is an outcome of spin-momentum locking and a small Fermi wavenumber at the surface of TI. In fact, the UMR is maximized around the Dirac point with the minimal Fermi wavenumber.
The control of a ferromagnets magnetization via only electric currents requires the efficient generation of current-driven spin-torques. In magnetic structures based on topological insulators (TIs) current-induced spin-orbit torques can be generated. Here we show that the addition of graphene, or bilayer graphene, to a TI-based magnetic structure greatly enhances the current-induced spin density accumulation and significantly reduces the amount of power dissipated. We find that this enhancement can be as high as a factor of 100, giving rise to a giant Edelstein effect. Such a large enhancement is due to the high mobility of graphene (bilayer graphene) and to the fact that the graphene (bilayer graphene) sheet very effectively screens charge impurities, the dominant source of disorder in topological insulators. Our results show that the integration of graphene in spintronics devices can greatly enhance their performance and functionalities.
The unidirectional magnetoresistance (UMR) is one of the most complex spin-dependent transport phenomena in ferromagnet/non-magnet bilayers, which involves spin injection and accumulation due to the spin Hall effect (SHE) or Rashba-Edelstein effect (REE), spin-dependent scattering, and magnon scattering at the interface or in the bulk of the ferromagnet. While UMR in metallic bilayers has been studied extensively in very recent years, its magnitude is as small as 10$^-$$^5$, which is too small for practical applications. Here, we demonstrate a giant UMR effect in a heterostructure of BiSb topological insulator -- GaMnAs ferromagnetic semiconductor. We obtained a large UMR ratio of 1.1%, and found that this giant UMR is governed not by the giant magnetoresistance (GMR)-like spin-dependent scattering, but by magnon emission/absorption and strong spin-disorder scattering in the GaMnAs layer. Our results provide new insight into the complex physics of UMR, as well as a strategy for enhancing its magnitude for device applications.
We observe an unusual behavior of the spin Hall magnetoresistance (SMR) measured in a Pt ultra-thin film deposited on a ferromagnetic insulator, which is a tensile-strained LaCoO3 (LCO) thin film with the Curie temperature Tc=85K. The SMR displays a strong magnetic-field dependence below Tc, with the SMR amplitude continuing to increase (linearly) with increasing the field far beyond the saturation value of the ferromagnet. The SMR amplitude decreases gradually with raising the temperature across Tc and remains measurable even above Tc. Moreover, no hysteresis is observed in the field dependence of the SMR. These results indicate that a novel low-dimensional magnetic system forms on the surface of LCO and that the Pt/LCO interface decouples magnetically from the rest of the LCO thin film. To explain the experiment, we revisit the derivation of the SMR corrections and relate the spin-mixing conductances to the microscopic quantities describing the magnetism at the interface. Our results can be used as a technique to probe quantum magnetism on the surface of a magnetic insulator.
273 - B. Xia , P. Ren , Azat Sulaev 2011
Topological insulator is composed of an insulating bulk state and time reversal symmetry protected two-dimensional surface states. One of the characteristics of the surface states is the locking between electron momentum and spin orientation. Here, we report a novel in-plane anisotropic magnetoresistance in topological insulator Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructures. To explain the novel effect, we propose that the Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructure forms a spin-valve or Giant magnetoresistance device due to spin-momentum locking. The novel in-plane anisotropic magnetoresistance can be explained as a Giant magnetoresistance effect of the Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا