We examine how the randomness of behavior and the flow of information between agents affect the formation of opinions. Our main research involves the process of opinion evolution, opinion clusters formation and studying the probability of sustaining opinion. The results show that opinion formation (clustering of opinion) is influenced by both flow of information between agents (interactions outside the closest neighbors) and randomness in adopting opinions.
In transportation, communication, social and other real complex networks, some critical edges act a pivotal part in controlling the flow of information and maintaining the integrity of the structure. Due to the importance of critical edges in theoretical studies and practical applications, the identification of critical edges gradually become a hot topic in current researches. Considering the overlap of communities in the neighborhood of edges, a novel and effective metric named subgraph overlap (SO) is proposed to quantifying the significance of edges. The experimental results show that SO outperforms all benchmarks in identifying critical edges which are crucial in maintaining the integrity of the structure and functions of networks.
A simple model of opinion formation dynamics in which binary-state agents make up their opinions due to the influence of agents in a local neighborhood is studied using different network topologies. Each agent uses two different strategies, the Sznajd rule with a probability $q$ and the Galam majority rule (without inertia) otherwise; being $q$ a parameter of the system. Initially, the binary-state agents may have opinions (at random) against or in favor about a certain topic. The time evolution of the system is studied using different network topologies, starting from different initial opinion densities. A transition from consensus in one opinion to the other is found at the same percentage of initial distribution no matter which type of network is used or which opinion formation rule is used.
Using transfer entropy, we observed the strength and direction of information flow between stock indices. We uncovered that the biggest source of information flow is America. In contrast, the Asia/Pacific region the biggest is receives the most information. According to the minimum spanning tree, the GSPC is located at the focal point of the information source for world stock markets.
Groups of firms often achieve a competitive advantage through the formation of geo-industrial clusters. Although many exemplary clusters, such as Hollywood or Silicon Valley, have been frequently studied, systematic approaches to identify and analyze the hierarchical structure of the geo-industrial clusters at the global scale are rare. In this work, we use LinkedIns employment histories of more than 500 million users over 25 years to construct a labor flow network of over 4 million firms across the world and apply a recursive network community detection algorithm to reveal the hierarchical structure of geo-industrial clusters. We show that the resulting geo-industrial clusters exhibit a stronger association between the influx of educated-workers and financial performance, compared to existing aggregation units. Furthermore, our additional analysis of the skill sets of educated-workers supplements the relationship between the labor flow of educated-workers and productivity growth. We argue that geo-industrial clusters defined by labor flow provide better insights into the growth and the decline of the economy than other common economic units.
We investigated financial market data to determine which factors affect information flow between stocks. Two factors, the time dependency and the degree of efficiency, were considered in the analysis of Korean, the Japanese, the Taiwanese, the Canadian, and US market data. We found that the frequency of the significant information decreases as the time interval increases. However, no significant information flow was observed in the time series from which the temporal time correlation was removed. These results indicated that the information flow between stocks evidences time-dependency properties. Furthermore, we discovered that the difference in the degree of efficiency performs a crucial function in determining the direction of the significant information flow.
Agnieszka Kowalska-Styczen
.
(2020)
.
"Are randomness of behavior and information flow important to opinion forming in organization?"
.
Krzysztof Malarz
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا