No Arabic abstract
Interactions are essential for the creation of correlated quantum many-body states. While two-body interactions underlie most natural phenomena, three- and four-body interactions are important for the physics of nuclei [1], exotic few-body states in ultracold quantum gases [2], the fractional quantum Hall effect [3], quantum error correction [4], and holography [5, 6]. Recently, a number of artificial quantum systems have emerged as simulators for many-body physics, featuring the ability to engineer strong interactions. However, the interactions in these systems have largely been limited to the two-body paradigm, and require building up multi-body interactions by combining two-body forces. Here, we demonstrate a pure N-body interaction between microwave photons stored in an arbitrary number of electromagnetic modes of a multimode cavity. The system is dressed such that there is collectively no interaction until a target total photon number is reached across multiple distinct modes, at which point they interact strongly. The microwave cavity features 9 modes with photon lifetimes of $sim 2$ ms coupled to a superconducting transmon circuit, forming a multimode circuit QED system with single photon cooperativities of $sim10^9$. We generate multimode interactions by using cavity photon number resolved drives on the transmon circuit to blockade any multiphoton state with a chosen total photon number distributed across the target modes. We harness the interaction for state preparation, preparing Fock states of increasing photon number via quantum optimal control pulses acting only on the cavity modes. We demonstrate multimode interactions by generating entanglement purely with uniform cavity drives and multimode photon blockade, and characterize the resulting two- and three-mode W states using a new protocol for multimode Wigner tomography.
Non-equilibrium phase transitions exist in damped-driven open quantum systems, when the continuous tuning of an external parameter leads to a transition between two robust steady states. In second-order transitions this change is abrupt at a critical point, whereas in first-order transitions the two phases can co-exist in a critical hysteresis domain. Here we report the observation of a first-order dissipative quantum phase transition in a driven circuit quantum electrodynamics (QED) system. It takes place when the photon blockade of the driven cavity-atom system is broken by increasing the drive power. The observed experimental signature is a bimodal phase space distribution with varying weights controlled by the drive strength. Our measurements show an improved stabilization of the classical attractors up to the milli-second range when the size of the quantum system is increased from one to three artificial atoms. The formation of such robust pointer states could be used for new quantum measurement schemes or to investigate multi-photon quantum many-body phases.
Interfacing photonic and solid-state qubits within a hybrid quantum architecture offers a promising route towards large scale distributed quantum computing. In that respect, hybrid quantum systems combining circuit QED with ions doped into solids are an attractive platform. There, the ions serve as coherent memory elements and reversible conversion elements of microwave to optical qubits. Among many possible spin-doped solids, erbium ions offer the unique opportunity of a coherent conversion of microwave photons into the telecom C-band at $1.54,mu$m employed for long distance communication. In our work, we perform a time-resolved electron spin resonance study of an Er$^{3+}$:Y$_2$SiO$_5$ spin ensemble at milli-Kelvin temperatures and demonstrate multimode storage and retrieval of up to 16 coherent microwave pulses. The memory efficiency is measured to be 10$^{-4}$ at the coherence time of $T_2=5.6,mu$s.
We analyze the photon statistics of a weakly driven optomechanical system and discuss the effect of photon blockade under single photon strong coupling conditions. We present an intuitive interpretation of this effect in terms of displaced oscillator states and derive analytic expressions for the cavity excitation spectrum and the two photon correlation function $g^{(2)}(0)$. Our results predict the appearance of non-classical photon correlations in the combined strong coupling and sideband resolved regime, and provide a first detailed understanding of photon-photon interactions in strong coupling optomechanics.
We propose to manipulate the statistic properties of the photons transport nonreciprocally via quadratic optomechanical coupling. We present a scheme to generate quadratic optomechanical interactions in the normal optical modes of a whispering-gallery-mode (WGM) optomechanical system by eliminating the linear optomechanical couplings via anticrossing of different modes. By optically pumping the WGM optomechanical system in one direction, the effective quadratic optomechanical coupling in that direction will be enhanced significantly, and nonreciprocal photon blockade will be observed consequently. Our proposal has potential applications for the on-chip nonreciprocal single-photon devices.
We consider a dissipative evolution of parametrically-driven qubits-cavity system under the periodical modulation of coupling energy between two subsystems, which leads to the amplification of counterrotating processes. We reveal a very rich dynamical behavior of this hybrid system. In particular, we find that the energy dissipation in one of the subsystems can enhance quantum effects in another subsystem. For instance, optimal cavity decay assists to stabilize entanglement and quantum correlations between qubits even in the steady state and to compensate finite qubit relaxation. On the contrary, energy dissipation in qubit subsystem results in the enhanced photon production from vacuum for strong modulation, but destroys both quantum concurrence and quantum mutual information between qubits. Our results provide deeper insights to nonstationary cavity quantum electrodynamics in context of quantum information processing and might be of importance for dissipative quantum state engineering.