Do you want to publish a course? Click here

About a conjecture of Lieb-Solovej

205   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Very recently, E. H. Lieb and J. P. Solovej stated a conjecture about the constant of embedding between two Bergman spaces of the upper-half plane. A question in relation with a Werhl-type entropy inequality for the affine $AX+B$ group. More precisely, that for any holomorphic function $F$ on the upper-half plane $Pi^+$, $$int_{Pi^+}|F(x+iy)|^{2s}y^{2s-2}dxdyle frac{pi^{1-s}}{(2s-1)2^{2s-2}}left(int_{Pi^+}|F(x+iy)|^2 dxdyright)^s $$ for $sge 1$, and the constant $frac{pi^{1-s}}{(2s-1)2^{2s-2}}$ is sharp. We prove differently that the above holds whenever $s$ is an integer and we prove that it holds when $srightarrowinfty$. We also prove that when restricted to powers of the Bergman kernel, the conjecture holds. We next study the case where $s$ is close to $1.$ Hereafter, we transfer the conjecture to the unit disc where we show that the conjecture holds when restricted to analytic monomials. Finally, we overview the bounds we obtain in our attempts to prove the conjecture.



rate research

Read More

Ehlers-Kundt conjecture is a physical assertion about the fundamental role of plane waves for the description of gravitational waves. Mathematically, it becomes equivalent to a problem on the Euclidean plane ${mathbb R}^2$ with a very simple formulation in Classical Mechanics: given a non-necessarily autonomous potential $V(z,u)$, $(z,u)in {mathbb R}^2times {mathbb R}$, harmonic in $z$ (i.e. source-free), the trajectories of its associated dynamical system $ddot{z}(s)=- abla_z V(z(s),s)$ are complete (they live eternally) if and only if $V(z,u)$ is a polynomial in $z$ of degree at most $2$ (so that $V$ is a standard mathematical idealization of vacuum). Here, the conjecture is solved in the significative case that $V$ is bounded polynomially in $z$ for finite values of $uin {mathbb R}$. The mathematical and physical implications of this {em polynomial EK conjecture}, as well as the non-polynomial one, are discussed beyond their original scope.
102 - XiaoHuang Huang 2021
In this paper, we prove a conjecture posed by Li-Yang in cite{ly3}. We prove the following result: Let $f(z)$ be a nonconstant entire function, and let $a(z) otequivinfty, b(z) otequivinfty$ be two distinct small meromorphic functions of $f(z)$. If $f(z)$ and $f^{(k)}(z)$ share $a(z)$ and $b(z)$ IM. Then $f(z)equiv f^{(k)}(z)$, which confirms a conjecture due to Li and Yang (in Illinois J. Math. 44:349-362, 2000).
123 - Gennadi Henkin 2005
This article gives a complex analysis lighting on the problem which consists in restoring a bordered connected riemaniann surface from its boundary and its Dirichlet-Neumann operator. The three aspects of this problem, unicity, reconstruction and characterization are approached.
We study the ground-state properties and excitation spectrum of the Lieb-Liniger model, i.e. the one-dimensional Bose gas with repulsive contact interactions. We solve the Bethe-Ansatz equations in the thermodynamic limit by using an analytic method based on a series expansion on orthogonal polynomials developed in cite{Ristivojevic} and push the expansion to an unprecedented order. By a careful analysis of the mathematical structure of the series expansion, we make a conjecture for the analytic exact result at zero temperature and show that the partially resummed expressions thereby obtained compete with accurate numerical calculations. This allows us to evaluate the density of quasi-momenta, the ground-state energy, the local two-body correlation function and Tans contact. Then, we study the two branches of the excitation spectrum. Using a general analysis of their properties and symmetries, we obtain novel analytical expressions at arbitrary interaction strength which are found to be extremely accurate in a wide range of intermediate to strong interactions.
We present in this work a heuristic expression for the density of prime numbers. Our expression leads to results which possesses approximately the same precision of the Riemanns function in the domain that goes from 2 to 1010 at least. Instead of using a constant as was done by Legendre and others in the formula of Gauss, we try to adjust the data through a function. This function has the remarkable property: its points of discontinuity are the prime numbers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا