Do you want to publish a course? Click here

Ground-state energy and excitation spectrum of the Lieb-Liniger model : accurate analytical results and conjectures about the exact solution

71   0   0.0 ( 0 )
 Added by Guillaume Lang
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the ground-state properties and excitation spectrum of the Lieb-Liniger model, i.e. the one-dimensional Bose gas with repulsive contact interactions. We solve the Bethe-Ansatz equations in the thermodynamic limit by using an analytic method based on a series expansion on orthogonal polynomials developed in cite{Ristivojevic} and push the expansion to an unprecedented order. By a careful analysis of the mathematical structure of the series expansion, we make a conjecture for the analytic exact result at zero temperature and show that the partially resummed expressions thereby obtained compete with accurate numerical calculations. This allows us to evaluate the density of quasi-momenta, the ground-state energy, the local two-body correlation function and Tans contact. Then, we study the two branches of the excitation spectrum. Using a general analysis of their properties and symmetries, we obtain novel analytical expressions at arbitrary interaction strength which are found to be extremely accurate in a wide range of intermediate to strong interactions.



rate research

Read More

We consider the entanglement between two spatial subregions in the Lieb-Liniger model of bosons in one spatial dimension interacting via a contact interaction. Using ground state path integral quantum Monte Carlo we numerically compute the R{e}nyi entropy of the reduced density matrix of the subsystem as a measure of entanglement. Our numerical algorithm is based on a replica method previously introduced by the authors, which we extend to efficiently study the entanglement of spatial subsystems of itinerant bosons. We confirm a logarithmic scaling of the R{e}nyi entropy with subsystem size that is expected from conformal field theory, and compute the non-universal subleading constant for interaction strengths ranging over two orders of magnitude. In the strongly interacting limit, we find agreement with the known free fermion result.
144 - Eldad Bettelheim 2019
The Whitham approach is a well-studied method to describe non-linear integrable systems. Although approximate in nature, its results may predict rather accurately the time evolution of such systems in many situations given initial conditions. A similarly powerful approach has recently emerged that is applicable to quantum integrable systems, namely the generalized hydrodynamics approach. This paper aims at showing that the Whitham approach is the semiclassical limit of the generalized hydrodynamics approach by connecting the two formal methods explicitly on the example of the Lieb-Liniger model on the quantum side to the non-linear Schr{o}dinger equation on the classical side in the $cto0$ limit, $c$ being the interaction parameter. We show how quantum expectation values may be computed in this limit based on the connection established here which is mentioned above.
We develop a method for the calculation of vacuum expectation values of local operators in the Lieb-Liniger model. This method is based on a set of new identities obtained using integrability and effective theory (``bosonization) description. We use this method to get an explicit expression for the three-body local correlation function, measured in a recent experiment [1].
143 - Spyros Sotiriadis 2020
Aiming at studying the emergence of Non-Equilibrium Steady States (NESS) in quantum integrable models by means of an exact analytical method, we focus on the Tonks-Girardeau or hard-core boson limit of the Lieb-Liniger model. We consider the abrupt expansion of a gas from one half to the entire confining box, a prototypical case of inhomogeneous quench, also known as geometric quench. Based on the exact calculation of quench overlaps, we develop an analytical method for the derivation of the NESS by rigorously treating the thermodynamic and large time and distance limit. Our method is based on complex analysis tools for the derivation of the asymptotics of the many-body wavefunction, does not make essential use of the effectively non-interacting character of the hard-core boson gas and is sufficiently robust for generalisation to the genuinely interacting case.
72 - Li Peng , Yicong Yu , Xi-Wen Guan 2019
Using the Bethe ansatz solution, we analytically study expansionary, magnetic and interacting Gruneisen parameters (GPs) for one-dimensional (1D) Lieb-Liniger and Yang-Gaudin models. These different GPs elegantly quantify the dependences of characteristic energy scales of these quantum gases on the volume, the magnetic field and the interaction strength, revealing the caloric effects resulted from the variations of these potentials. The obtained GPs further confirm an identity which is incurred by the symmetry of the thermal potential. We also present universal scaling behavior of these GPs in the vicinities of the quantum critical points driven by different potentials. The divergence of the GPs not only provides an experimental identification of non-Fermi liquid nature at quantum criticality but also elegantly determine low temperature phases of the quantum gases. Moreover, the pairing and depairing features in the 1D attractive Fermi gases can be captured by the magnetic and interacting GPs, facilitating experimental observation of quantum phase transitions. Our results open to further study the interaction- and magnetic-field-driven quantum refrigeration and quantum heat engine in quantum gases of ultracold atoms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا