No Arabic abstract
In this paper, we prove a conjecture posed by Li-Yang in cite{ly3}. We prove the following result: Let $f(z)$ be a nonconstant entire function, and let $a(z) otequivinfty, b(z) otequivinfty$ be two distinct small meromorphic functions of $f(z)$. If $f(z)$ and $f^{(k)}(z)$ share $a(z)$ and $b(z)$ IM. Then $f(z)equiv f^{(k)}(z)$, which confirms a conjecture due to Li and Yang (in Illinois J. Math. 44:349-362, 2000).
In this article, we obtain a strict inequality between the conjugate Hardy $H^{2}$ kernels and the Bergman kernels on planar regular regions with $n>1$ boundary components, which is a conjecture of Saitoh.
A typical decomposition question asks whether the edges of some graph $G$ can be partitioned into disjoint copies of another graph $H$. One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree. It says that any tree with $n$ edges packs $2n+1$ times into the complete graph $K_{2n+1}$. In this paper, we prove this conjecture for large $n$.
We prove that if the set of unordered pairs of real numbers is colored by finitely many colors, there is a set of reals homeomorphic to the rationals whose pairs have at most two colors. Our proof uses large cardinals and it verifies a conjecture of Galvin from the 1970s. We extend this result to an essentially optimal class of topological spaces in place of the reals.
We prove a conjecture of Ohba which says that every graph $G$ on at most $2chi(G)+1$ vertices satisfies $chi_ell(G)=chi(G)$.
We present a proof of the compositional shuffle conjecture, which generalizes the famous shuffle conjecture for the character of the diagonal coinvariant algebra. We first formulate the combinatorial side of the conjecture in terms of certain operators on a graded vector space $V_*$ whose degree zero part is the ring of symmetric functions $Sym[X]$ over $mathbb{Q}(q,t)$. We then extend these operators to an action of an algebra $tilde{AA}$ acting on this space, and interpret the right generalization of the $ abla$ using an involution of the algebra which is antilinear with respect to the conjugation $(q,t)mapsto (q^{-1},t^{-1})$.