No Arabic abstract
We propose a novel approach to the inverse Ising problem which employs the recently introduced Density Consistency approximation (DC) to determine the model parameters (couplings and external fields) maximizing the likelihood of given empirical data. This method allows for closed-form expressions of the inferred parameters as a function of the first and second empirical moments. Such expressions have a similar structure to the small-correlation expansion derived by Sessak and Monasson, of which they provide an improvement in the case of non-zero magnetization at low temperatures, as well as in presence of random external fields. The present work provides an extensive comparison with most common inference methods used to reconstruct the model parameters in several regimes, i.e. by varying both the network topology and the distribution of fields and couplings. The comparison shows that no method is uniformly better than every other one, but DC appears nevertheless as one of the most accurate and reliable approaches to infer couplings and fields from first and second moments in a significant range of parameters.
We find an exact general solution to the three-dimensional (3D) Ising model via an exact self-consistency equation for nearest-neighbors correlations. It is derived by means of an exact solution to the recurrence equations for partial contractions of creation and annihilation operators for constrained spin bosons in a Holstein-Primakoff representation. In particular, we calculate analytically the total irreducible self-energy, the order parameter, the correlation functions, and the joined occupation probabilities of spin bosons. The developed regular microscopic quantum-field-theory method has a potential for a full solution of a long-standing and still open problem of 3D critical phenomena.
The N-vector cubic model relevant, among others, to the physics of the randomly dilute Ising model is analyzed in arbitrary dimension by means of an exact renormalization-group equation. This study provides a unified picture of its critical physics between two and four dimensions. We give the critical exponents for the three-dimensional randomly dilute Ising model which are in good agreement with experimental and numerical data. The relevance of the cubic anisotropy in the O(N) model is also treated.
The inverse problem for a disordered system involves determining the interparticle interaction parameters consistent with a given set of experimental data. Recently, Rutledge has shown (Phys. Rev. E63, 021111 (2001)) that such problems can be generally expressed in terms of a grand canonical ensemble of polydisperse particles. Within this framework, one identifies a polydisperse attribute (`pseudo-species) $sigma$ corresponding to some appropriate generalized coordinate of the system to hand. Associated with this attribute is a composition distribution $barrho(sigma)$ measuring the number of particles of each species. Its form is controlled by a conjugate chemical potential distribution $mu(sigma)$ which plays the role of the requisite interparticle interaction potential. Simulation approaches to the inverse problem involve determining the form of $mu(sigma)$ for which $barrho(sigma)$ matches the available experimental data. The difficulty in doing so is that $mu(sigma)$ is (in general) an unknown {em functional} of $barrho(sigma)$ and must therefore be found by iteration. At high particle densities and for high degrees of polydispersity, strong cross coupling between $mu(sigma)$ and $barrho(sigma)$ renders this process computationally problematic and laborious. Here we describe an efficient and robust {em non-equilibrium} simulation scheme for finding the equilibrium form of $mu[barrho(sigma)]$. The utility of the method is demonstrated by calculating the chemical potential distribution conjugate to a specific log-normal distribution of particle sizes in a polydisperse fluid.
A Kallen-Lehman approach to 3D Ising model is analyzed numerically both at low and high temperature. It is shown that, even assuming a minimal duality breaking, one can fix three parameters of the model to get a very good agreement with the MonteCarlo results at high temperatures. With the same parameters the agreement is satisfactory both at low and near critical temperatures. How to improve the agreement with MonteCarlo results by introducing a more general duality breaking is shortly discussed.
We present a new approach to a classical problem in statistical physics: estimating the partition function and other thermodynamic quantities of the ferromagnetic Ising model. Markov chain Monte Carlo methods for this problem have been well-studied, although an algorithm that is truly practical remains elusive. Our approach takes advantage of the fact that, for a fixed bond strength, studying the ferromagnetic Ising model is a question of counting particular subgraphs of a given graph. We combine graph theory and heuristic sampling to determine coefficients that are independent of temperature and that, once obtained, can be used to determine the partition function and to compute physical quantities such as mean energy, mean magnetic moment, specific heat, and magnetic susceptibility.