Do you want to publish a course? Click here

Exact general solution to the three-dimensional Ising model and a self-consistency equation for the nearest-neighbors correlations

75   0   0.0 ( 0 )
 Added by Vitaly Kocharovsky
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We find an exact general solution to the three-dimensional (3D) Ising model via an exact self-consistency equation for nearest-neighbors correlations. It is derived by means of an exact solution to the recurrence equations for partial contractions of creation and annihilation operators for constrained spin bosons in a Holstein-Primakoff representation. In particular, we calculate analytically the total irreducible self-energy, the order parameter, the correlation functions, and the joined occupation probabilities of spin bosons. The developed regular microscopic quantum-field-theory method has a potential for a full solution of a long-standing and still open problem of 3D critical phenomena.



rate research

Read More

191 - N.G. Fytas , A. Malakis 2010
We investigate, by means of extensive Monte Carlo simulations, the magnetic critical behavior of the three-dimensional bimodal random-field Ising model at the strong disorder regime. We present results in favor of the two-exponent scaling scenario, $bar{eta}=2eta$, where $eta$ and $bar{eta}$ are the critical exponents describing the power-law decay of the connected and disconnected correlation functions and we illustrate, using various finite-size measures and properly defined noise to signal ratios, the strong violation of self-averaging of the model in the ordered phase.
We comment on Z. D. Zhangs Response [arXiv:0812.2330] to our recent Comment [arXiv:0811.3876] addressing the conjectured solution of the three-dimensional Ising model reported in [arXiv:0705.1045].
We discuss the exact solution for the properties of the recently introduced ``necklace model for reptation. The solution gives the drift velocity, diffusion constant and renewal time for asymptotically long chains. Its properties are also related to a special case of the Rubinstein-Duke model in one dimension.
We consider the three-dimensional Ising model slightly below its critical temperature, with boundary conditions leading to the presence of an interface. We show how the interfacial properties can be deduced starting from the particle modes of the underlying field theory. The product of the surface tension and the correlation length yields the particle density along the string whose propagation spans the interface. We also determine the order parameter and energy density profiles across the interface, and show that they are in complete agreement with Monte Carlo simulations that we perform.
We determine the interface tension for the 100, 110 and 111 interface of the simple cubic Ising model with nearest-neighbour interaction using novel simulation methods. To overcome the droplet/strip transition and the droplet nucleation barrier we use a newly developed combination of the multimagnetic algorithm with the parallel tempering method. We investigate a large range of inverse temperatures to study the anisotropy of the interface tension in detail.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا