The N-vector cubic model relevant, among others, to the physics of the randomly dilute Ising model is analyzed in arbitrary dimension by means of an exact renormalization-group equation. This study provides a unified picture of its critical physics between two and four dimensions. We give the critical exponents for the three-dimensional randomly dilute Ising model which are in good agreement with experimental and numerical data. The relevance of the cubic anisotropy in the O(N) model is also treated.
Statistical mechanical models with local interactions in $d>1$ dimension can be regarded as $d=1$ dimensional models with regular long range interactions. In this paper we study the critical properties of Ising models having $V$ sites, each having $z$ randomly chosen neighbors. For $z=2$ the model reduces to the $d=1$ Ising model. For $z= infty$ we get a mean field model. We find that for finite $z > 2$ the system has a second order phase transition characterized by a length scale $L={rm ln}V$ and mean field critical exponents that are independent of $z$.
We present a new approach to a classical problem in statistical physics: estimating the partition function and other thermodynamic quantities of the ferromagnetic Ising model. Markov chain Monte Carlo methods for this problem have been well-studied, although an algorithm that is truly practical remains elusive. Our approach takes advantage of the fact that, for a fixed bond strength, studying the ferromagnetic Ising model is a question of counting particular subgraphs of a given graph. We combine graph theory and heuristic sampling to determine coefficients that are independent of temperature and that, once obtained, can be used to determine the partition function and to compute physical quantities such as mean energy, mean magnetic moment, specific heat, and magnetic susceptibility.
We study the quantum sine-Gordon model within a nonperturbative functional renormalization-group approach (FRG). This approach is benchmarked by comparing our findings for the soliton and lightest breather (soliton-antisoliton bound state) masses to exact results. We then examine the validity of the Lukyanov-Zamolodchikov conjecture for the expectation value $langle e^{frac{i}{2}nbetavarphi}rangle$ of the exponential fields in the massive phase ($n$ is integer and $2pi/beta$ denotes the periodicity of the potential in the sine-Gordon model). We find that the minimum of the relative and absolute disagreements between the FRG results and the conjecture is smaller than 0.01.
The influence of random site dilution on the critical properties of the two-dimensional Ising model on a square lattice was explored by Monte Carlo simulations with the Wang-Landau sampling. The lattice linear size was $L = 20-120$ and the concentration of diluted sites $q=0.1, 0.2, 0.3$. Its pure version displays a second-order phase transition with a vanishing specific heat critical exponent $alpha$, thus, the Harris criterion is inconclusive, in that disorder is a relevant or irrelevant perturbation for the critical behavior of the pure system. The main effort was focused on the specific heat and magnetic susceptibility. We have also looked at the probability distribution of susceptibility, pseudocritical temperatures and specific heat for assessing self-averaging. The study was carried out in appropriate restricted but dominant energy subspaces. By applying the finite-size scaling analysis, the correlation length exponent $ u$ was found to be greater than one, whereas the ratio of the critical exponents ($alpha / u$) is negative and ($gamma / u$) retains its pure Ising model value supporting weak universality.
A Kallen-Lehman approach to 3D Ising model is analyzed numerically both at low and high temperature. It is shown that, even assuming a minimal duality breaking, one can fix three parameters of the model to get a very good agreement with the MonteCarlo results at high temperatures. With the same parameters the agreement is satisfactory both at low and near critical temperatures. How to improve the agreement with MonteCarlo results by introducing a more general duality breaking is shortly discussed.