Do you want to publish a course? Click here

Generalized principal eigenvalues on $mathbb{R}^d$ of second order elliptic operators with rough nonlocal kernels

139   0   0.0 ( 0 )
 Added by Prasun Roychowdhury
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study the generalized eigenvalue problem on the whole space for a class of integro-differential elliptic operators. The nonlocal operator is over a finite measure, but this has no particular structure and it can even be singular. The first part of the paper presents results concerning the existence of a principal eigenfunction. Then we present various necessary and/or sufficient conditions for the maximum principle to hold, and use these to characterize the simplicity of the principal eigenvalue.



rate research

Read More

We study the generalized eigenvalue problem in $mathbb{R}^N$ for a general convex nonlinear elliptic operator which is locally elliptic and positively $1$-homogeneous. Generalizing article of Berestycki and Rossi in [Comm. Pure Appl. Math. 68 (2015), no. 6, 1014-1065] we consider three different notions of generalized eigenvalues and compare them. We also discuss the maximum principles and uniqueness of principal eigenfunctions.
We consider general second order uniformly elliptic operators subject to homogeneous boundary conditions on open sets $phi (Omega)$ parametrized by Lipschitz homeomorphisms $phi $ defined on a fixed reference domain $Omega$. Given two open sets $phi (Omega)$, $tilde phi (Omega)$ we estimate the variation of resolvents, eigenvalues and eigenfunctions via the Sobolev norm $|tilde phi -phi |_{W^{1,p}(Omega)}$ for finite values of $p$, under natural summability conditions on eigenfunctions and their gradients. We prove that such conditions are satisfied for a wide class of operators and open sets, including open sets with Lipschitz continuous boundaries. We apply these estimates to control the variation of the eigenvalues and eigenfunctions via the measure of the symmetric difference of the open sets. We also discuss an application to the stability of solutions to the Poisson problem.
132 - Hongjie Dong , N.V. Krylov 2009
The solvability in Sobolev spaces $W^{1,2}_p$ is proved for nondivergence form second order parabolic equations for $p>2$ close to 2. The leading coefficients are assumed to be measurable in the time variable and two coordinates of space variables, and almost VMO (vanishing mean oscillation) with respect to the other coordinates. This implies the $W^{2}_p$-solvability for the same $p$ of nondivergence form elliptic equations with leading coefficients measurable in two coordinates and VMO in the others. Under slightly different assumptions, we also obtain the solvability results when $p=2$.
240 - T. Iwabuchi , T. Matsuyama , 2016
Let $H_V=-Delta +V$ be a Schrodinger operator on an arbitrary open set $Omega$ of $mathbb R^d$, where $d geq 3$, and $Delta$ is the Dirichlet Laplacian and the potential $V$ belongs to the Kato class on $Omega$. The purpose of this paper is to show $L^p$-boundedness of an operator $varphi(H_V)$ for any rapidly decreasing function $varphi$ on $mathbb R$. $varphi(H_V)$ is defined by the spectral theorem. As a by-product, $L^p$-$L^q$-estimates for $varphi(H_V)$ are also obtained.
127 - Daniel M. Elton 2000
We study the Fredholm properties of a general class of elliptic differential operators on $R^n$. These results are expressed in terms of a class of weighted function spaces, which can be locally modeled on a wide variety of standard function spaces, and a related spectral pencil problem on the sphere, which is defined in terms of the asymptotic behaviour of the coefficients of the original operator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا