Do you want to publish a course? Click here

Stability estimates for resolvents, eigenvalues and eigenfunctions of elliptic operators on variable domains

237   0   0.0 ( 0 )
 Added by Gerassimos Barbatis
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

We consider general second order uniformly elliptic operators subject to homogeneous boundary conditions on open sets $phi (Omega)$ parametrized by Lipschitz homeomorphisms $phi $ defined on a fixed reference domain $Omega$. Given two open sets $phi (Omega)$, $tilde phi (Omega)$ we estimate the variation of resolvents, eigenvalues and eigenfunctions via the Sobolev norm $|tilde phi -phi |_{W^{1,p}(Omega)}$ for finite values of $p$, under natural summability conditions on eigenfunctions and their gradients. We prove that such conditions are satisfied for a wide class of operators and open sets, including open sets with Lipschitz continuous boundaries. We apply these estimates to control the variation of the eigenvalues and eigenfunctions via the measure of the symmetric difference of the open sets. We also discuss an application to the stability of solutions to the Poisson problem.



rate research

Read More

We investigate multiplicity and symmetry properties of higher eigenvalues and eigenfunctions of the $p$-Laplacian under homogeneous Dirichlet boundary conditions on certain symmetric domains $Omega subset mathbb{R}^N$. By means of topological arguments, we show how symmetries of $Omega$ help to construct subsets of $W_0^{1,p}(Omega)$ with suitably high Krasnoselskiu{i} genus. In particular, if $Omega$ is a ball $B subset mathbb{R}^N$, we obtain the following chain of inequalities: $$ lambda_2(p;B) leq dots leq lambda_{N+1}(p;B) leq lambda_ominus(p;B). $$ Here $lambda_i(p;B)$ are variational eigenvalues of the $p$-Laplacian on $B$, and $lambda_ominus(p;B)$ is the eigenvalue which has an associated eigenfunction whose nodal set is an equatorial section of $B$. If $lambda_2(p;B)=lambda_ominus(p;B)$, as it holds true for $p=2$, the result implies that the multiplicity of the second eigenvalue is at least $N$. In the case $N=2$, we can deduce that any third eigenfunction of the $p$-Laplacian on a disc is nonradial. The case of other symmetric domains and the limit cases $p=1$, $p=infty$ are also considered.
We study the generalized eigenvalue problem on the whole space for a class of integro-differential elliptic operators. The nonlocal operator is over a finite measure, but this has no particular structure and it can even be singular. The first part of the paper presents results concerning the existence of a principal eigenfunction. Then we present various necessary and/or sufficient conditions for the maximum principle to hold, and use these to characterize the simplicity of the principal eigenvalue.
We consider second-order uniformly elliptic operators subject to Dirichlet boundary conditions. Such operators are considered on a bounded domain $Omega$ and on the domain $phi(Omega)$ resulting from $Omega$ by means of a bi-Lipschitz map $phi$. We consider the solutions $u$ and $tilde u$ of the corresponding elliptic equations with the same right-hand side $fin L^2(Omegacupphi(Omega))$. Under certain assumptions we estimate the difference $| ablatilde u- abla u|_{L^2(Omegacupphi(Omega))}$ in terms of certain measure of vicinity of $phi$ to the identity map. For domains within a certain class this provides estimates in terms of the Lebesgue measure of the symmetric difference of $phi(Omega)$ and $Omega$, that is $|phi(Omega)triangle Omega|$. We provide an example which shows that the estimates obtained are in a certain sense sharp.
149 - Soojung Kim 2014
In this paper, we obtain a uniform $W^{2,varepsilon}$-estimate of solutions to the fully nonlinear uniformly elliptic equations on Riemannian manifolds with a lower bound of sectional curvature using the ABP method.
We study spectral instability of steady states to the linearized 2D Euler equations on the torus written in vorticity form via certain Birman-Schwinger type operators $K_{lambda}(mu)$ and their associated 2-modified perturbation determinants $mathcal D(lambda,mu)$. Our main result characterizes the existence of an unstable eigenvalue to the linearized vorticity operator $L_{rm vor}$ in terms of zeros of the 2-modified Fredholm determinant $mathcal D(lambda,0)=det_{2}(I-K_{lambda}(0))$ associated with the Hilbert Schmidt operator $K_{lambda}(mu)$ for $mu=0$. As a consequence, we are also able to provide an alternative proof to an instability theorem first proved by Zhiwu Lin which relates existence of an unstable eigenvalue for $L_{rm vor}$ to the number of negative eigenvalues of a limiting elliptic dispersion operator $A_{0}$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا