No Arabic abstract
We propose a simple method to generate multilingual question and answer pairs on a large scale through the use of a single generative model. These synthetic samples can be used to improve the zero-shot performance of multilingual QA models on target languages. Our proposed multi-task training of the generative model only requires the labeled training samples in English, thus removing the need for such samples in the target languages, making it applicable to far more languages than those with labeled data. Human evaluations indicate the majority of such samples are grammatically correct and sensible. Experimental results show our proposed approach can achieve large gains on the XQuAD dataset, reducing the gap between zero-shot and supervised performance of smaller QA models on various languages.
Coupled with the availability of large scale datasets, deep learning architectures have enabled rapid progress on the Question Answering task. However, most of those datasets are in English, and the performances of state-of-the-art multilingual models are significantly lower when evaluated on non-English data. Due to high data collection costs, it is not realistic to obtain annotated data for each language one desires to support. We propose a method to improve the Cross-lingual Question Answering performance without requiring additional annotated data, leveraging Question Generation models to produce synthetic samples in a cross-lingual fashion. We show that the proposed method allows to significantly outperform the baselines trained on English data only. We report a new state-of-the-art on four multilingual datasets: MLQA, XQuAD, SQuAD-it and PIAF (fr).
Neural network-based methods represent the state-of-the-art in question generation from text. Existing work focuses on generating only questions from text without concerning itself with answer generation. Moreover, our analysis shows that handling rare words and generating the most appropriate question given a candidate answer are still challenges facing existing approaches. We present a novel two-stage process to generate question-answer pairs from the text. For the first stage, we present alternatives for encoding the span of the pivotal answer in the sentence using Pointer Networks. In our second stage, we employ sequence to sequence models for question generation, enhanced with rich linguistic features. Finally, global attention and answer encoding are used for generating the question most relevant to the answer. We motivate and linguistically analyze the role of each component in our framework and consider compositions of these. This analysis is supported by extensive experimental evaluations. Using standard evaluation metrics as well as human evaluations, our experimental results validate the significant improvement in the quality of questions generated by our framework over the state-of-the-art. The technique presented here represents another step towards more automated reading comprehension assessment. We also present a live system footnote{Demo of the system is available at url{https://www.cse.iitb.ac.in/~vishwajeet/autoqg.html}.} to demonstrate the effectiveness of our approach.
Typically, Open Information Extraction (OpenIE) focuses on extracting triples, representing a subject, a relation, and the object of the relation. However, most of the existing techniques are based on a predefined set of relations in each domain which limits their applicability to newer domains where these relations may be unknown such as financial documents. This paper presents a zero-shot open information extraction technique that extracts the entities (value) and their descriptions (key) from a sentence, using off the shelf machine reading comprehension (MRC) Model. The input questions to this model are created using a novel noun phrase generation method. This method takes the context of the sentence into account and can create a wide variety of questions making our technique domain independent. Given the questions and the sentence, our technique uses the MRC model to extract entities (value). The noun phrase corresponding to the question, with the highest confidence, is taken as the description (key). This paper also introduces the EDGAR10-Q dataset which is based on publicly available financial documents from corporations listed in US securities and exchange commission (SEC). The dataset consists of paragraphs, tagged values (entities), and their keys (descriptions) and is one of the largest among entity extraction datasets. This dataset will be a valuable addition to the research community, especially in the financial domain. Finally, the paper demonstrates the efficacy of the proposed technique on the EDGAR10-Q and Ade corpus drug dosage datasets, where it obtained 86.84 % and 97% accuracy, respectively.
Transferring representations from large supervised tasks to downstream tasks has shown promising results in AI fields such as Computer Vision and Natural Language Processing (NLP). In parallel, the recent progress in Machine Translation (MT) has enabled one to train multilingual Neural MT (NMT) systems that can translate between multiple languages and are also capable of performing zero-shot translation. However, little attention has been paid to leveraging representations learned by a multilingual NMT system to enable zero-shot multilinguality in other NLP tasks. In this paper, we demonstrate a simple framework, a multilingual Encoder-Classifier, for cross-lingual transfer learning by reusing the encoder from a multilingual NMT system and stitching it with a task-specific classifier component. Our proposed model achieves significant improvements in the English setup on three benchmark tasks - Amazon Reviews, SST and SNLI. Further, our system can perform classification in a new language for which no classification data was seen during training, showing that zero-shot classification is possible and remarkably competitive. In order to understand the underlying factors contributing to this finding, we conducted a series of analyses on the effect of the shared vocabulary, the training data type for NMT, classifier complexity, encoder representation power, and model generalization on zero-shot performance. Our results provide strong evidence that the representations learned from multilingual NMT systems are widely applicable across languages and tasks.
We study automatic question generation for sentences from text passages in reading comprehension. We introduce an attention-based sequence learning model for the task and investigate the effect of encoding sentence- vs. paragraph-level information. In contrast to all previous work, our model does not rely on hand-crafted rules or a sophisticated NLP pipeline; it is instead trainable end-to-end via sequence-to-sequence learning. Automatic evaluation results show that our system significantly outperforms the state-of-the-art rule-based system. In human evaluations, questions generated by our system are also rated as being more natural (i.e., grammaticality, fluency) and as more difficult to answer (in terms of syntactic and lexical divergence from the original text and reasoning needed to answer).