Do you want to publish a course? Click here

Unitarity Problems in 3$D$ Gravity Theories

178   0   0.0 ( 0 )
 Added by Bayram Tekin
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We revisit the problem of the bulk-boundary unitarity clash in 2 + 1 dimensional gravity theories, which has been an obstacle in providing a viable dual two-dimensional conformal field theory for bulk gravity in anti-de Sitter (AdS) spacetime. Chiral gravity, which is a particular limit of cosmological topologically massive gravity (TMG), suffers from pertur- bative log-modes with negative energies inducing a non-unitary logarithmic boundary field theory. We show here that any f(R) extension of TMG does not improve the situation. We also study the perturbative modes in the metric formulation of minimal massive gravity- originally constructed in a first-order formulation-and find that the massive mode has again negative energy except in the chiral limit. We comment on this issue and also discuss a possible solution to the problem of negative energy modes. In any of these theories, the infinitesimal dangerous deformations might not be integrable to full solutions; this suggests a linearization instability of AdS spacetime in the direction of the perturbative log-modes.



rate research

Read More

We discuss aspects of non-perturbative unitarity in quantum field theory. The additional ghost degrees of freedom arising in truncations of an effective action at a finite order in derivatives could be fictitious degrees of freedom. Their contributions to the fully-dressed propagator -- the residues of the corresponding ghost-like poles -- vanish once all operators compatible with the symmetry of the theory are included in the effective action. These fake ghosts do not indicate a violation of unitarity.
We investigate the ultraviolet (UV) behavior of two-scalar elastic scattering with graviton exchanges in higher curvature gravity theory. In the Einstein gravity, matter scattering is shown not to satisfy tree unitarity at high energy. Among a few possible directions to cure unitarity (i.e. UV completion of Einstein gravity), string theory, modified gravity, inclusion of high-mass/high-spin states, we take $R_{mu u}^2$ gravity coupled to matter. We show that the matter scattering with graviton interactions satisfies the unitarity bound at high energy, in contrast with the Einstein gravity. The difference in unitarity property of the two gravity theories is due to that in the UV behavior of the propagator and is probably connected to that in another UV property, namely renormalizability property of the two.
We study teleparallel gravity in five-dimensional spacetime with particular discussions on Kaluza-Klein (KK) and braneworld theories. We directly perform the dimensional reduction by differential forms. In the braneworld theory, the teleparallel gravity formalism in the Friedmann-Lema^{i}tre-Robertson-Walker cosmology is equivalent to GR due to the same Friedmann equation, whereas in the KK case the reduction of our formulation does not recover the effect as GR of 4-dimensional spacetime.
Pure gauge theories for de Sitter, anti de Sitter and orthogonal groups, in four-dimensional Euclidean spacetime, are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and a gravity theory emerges.
We propose a new basis of spin-operators, specific for the case of planar theories, which allows a Lagrangian decomposition into spin-parity components. The procedure enables us to discuss unitarity and spectral properties of gravity models with parity-breaking in a systematic way.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا